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A Sequential Approach To
Multivariable Stability Robustness Analysis

AIAA-91-2771-CP

Brett Newman” and David K. Schmidt™
Aerospace Research Center
Arizona State University
Tempe, Arizona

Abstract

In sequential loop closure, the importance of evaluating the
stability and stability robustness at the intermediate loop closures
is well known, yet how the stability and stability robustness
evaluated at the intermediate steps contribute to the stability and
stability robustness of the overall feedback sysiem must be
developed. An analysis of the complete feedback system reveals
the multivariable Nyquist contributions from the intermediate
loop closures. It is also shown that the results greatly simplify if
frequency separation exists between the intermediate loops. The
analysis is presented with a two-step loop closure procedure
using "inner” and “"outer” loops which can be generalized 10
mult-step situations. The control of the longitudinal dynamics
of an aircraft is addressed to further clarify and demonstrate the
results.

Introduction

" Consider the generic multivariable feedback loop in
Figure 1 with responses y, control inputs u, response
commands y., plant transfer function matrix G(s), and
compensator transfer function matrix K(s). Usually, the
compensalor mus! stabilize all unstable modes present in the
plant. Further, the compensator must ensure this stability in the
presence of plant modeling errors.

Frequency domain criteria for stability and stability
robusiness such as multivariable Nyquist stability theory are
well known and exiensively documented.’4 These 1ools are
directly applicable 1o a given multivariable compensator in the
format of Figure 1. For example, siability and stability
robustness are indicated by the Nyquist diagram corresponding
10 det [I + K(s)G(s)]. However, if the compensator is
developed with a sequential loop closure strategy,39 there exists
a2 void concerning the relationship between the stability and
stability robustness indicated after each loop closure and the
stability and stability robusiness of the complete feedback
system.

yels) + u(s) v(s)
— K(s) —® G(s) -

Figure 1. Generic Feedback Loop

For examptle, consider the two-step loop closures shown
in Figures 2 and 3, where the “inner loops” consists of outputs
v, and the “outer loops™ consists o outputs yq. Il is1mportani o
observe here that the inner and outer loops can be multivarable.
Further, observe that the block diagram structure in Figure 2 can
be manipulated into the more classical looking inner and outer
toop structure depicted in Figure 4 if K(s) and Gj(s) are
nonsingular. However, for ease of exposition the structure of
Figure 2 will be considered.

With only the inner loops closed, sysiem stability and
robustness are indicated by the Nyquist diagram corresponding
to det [T + K;(s)G,(s)], while after the outer loops are closed,
system stability and robustness are indicated by the Nyquist
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diagram corresponding to det [I + K,(s)Gy(s)] where Gi(s) is
the effective plant for the outer loop closure. Also, with only the
inner loops closed, if unstable sysiem modes remain (which are
to be siabilized by the outer loops), then the standard
multivariable stability robustness theory3-# applied at this
intermediate step is not valid.

Inner Loop Closure :

u(s) T T T T Toyols)
Gols)
ye(s) + )
[k =T [
us) L. — .
G(s)
Outer Loop Closure :
yols)
bl
yils) .
—
GJs) X
Figure 2. Two-Siep Loop Ciosure
Inncr Loop Closure -
"""""" + ¢ yols)

Gols)

Yei(s) + ¥i(s)
——

Quter Loop Closure

YeolsS) + 1o Yols)
e
‘>c,(s) + ¥i(s).

......................................

Figure 3. Two-Step Loop Closurc

1510

PRECENING SAnE

[ S

SLANK 1OT FiLMED




e

o~ P ——— -

- e

b ani e DS SRR B A IR

Yc,(s) =0

YCo(S) + +
K;(s)Ko(s)

y{s) Yo(s)

Ki(s) f— Gi(s) 9 Go(s)G]'(s)

K {s)ug(s)

ui(8) + uo(s)

Figure 4. Classical Inner And Outer Loop Structure

The goal of this paper is 1o refate the stability and
stability robustness evaluated at each stage of the (multivariable)
sequential loop closure to that of the final feedback system, to
offer insight, and to suggest a multivariable extension to this
frequently used classical synthesis technique.

Nyquist Stability And Stability Robustness

Stability of the closed-loop system in Figure 1 is
completely determined by the roots of the closed-loop
characteristic polynomial ¢ (s). The closed-loop characteristic
polynomial is related to the open-loop characteristic polynomial,

doi(s), by the well known relationship?

MS—) = det{I + K(s)G(s)]
dol(s) H
Application of the principle of the argument8 to Eq. (1) yields

N(O,det(I + K(s)G(s)],Crup)=2Z - P (2)

where the notation N(O,det [T + K(s)G(s)].Cgqyp) denotes the
number of encirclements of the origin made by the Nyquist
diagram (i.e., the mapping of det [I + K(s)G(s)] as s traverses
the contour Cryp, which encloses the entire right-half of the
complex plane). Further, Z is the number of closed-loop poles

(roots ot ¢¢(s)) inside Cryp, and P is the number of open-loop

poles (roots of ¢g)(s)) inside Cryp. For closed-loop asymptotic
stability, no closed-loop poles may lie in the right-half plane, or

Z2=0 = N=-P 3

In other words, the Nyquist diagram must have the correct
number of encirclements of the origin, namely -P.

The feedback loop in Figure 1 must also maintain
stability in the presence of plant modeling errors. One common
way to represent this error is with additive error AG(s) defined
by

AG(s) = GT(s) - G(s) (4)

where G1(s) denotes the "true” linear plant.
For the true feedback system, Eq. (1) becomes

M = det[I + K(s)G1(s)]
borz(s) (5)
where ¢.(s) and o1 (s) denote the true system’s closed-loop

and open-loop characteristic polynomials, respectively.
Application of the principle of the argument8 10 Eq. (5) yields

NT(0.det[I + K(s)G1(s)].CrHP) = Z7 - P1 (6)

where N1(0,det {T + K(s)G7(s)],.Cryp) denotes the number of
encirclements of the origin by the true system’'s Nyquist
diagram, Z is the number of true closed-loop poles in the right-
half plane. and Pt is the number of true open-loop poles in the
right-half plane. For closed-loop asymptotic stability of the true
system, none of it's closed-loop poles may lie in the right-half
plane, or

Zr=0 = Nr=-Pr M

It can be shown? that if
1. The nominal closed-loop system is asymptotically stable or
N = -P (see Eq. (3)), and
2. The required number of encirclements of the origin is the
same for both nominal and true closed-loop systems or P =
Pt (see Eqs. (3) and (7)),
then a necessary and sufficient condition guaranteeing closed-
loop asymptotic stability of the true system is

det(I + K(s)G(s.&)llse Cpyp.0ses120 (8)
where G(s,€) is given as
G(s,e) = G(s) + €AG(s) ©)

Note that € = 0 and € = | corresponds to the nominal and true
plants, respectively. The geometric concept associated with Eq.
(8) is that under assumptions 1. and 2., if as the nominal
Nyquist diagram is continuously warped to the shape of the true
Nyquist diagram, the number of encirclements of the origin
remains unchanged, closed-loop asymptotic stability of the true
system is assured. In other words, to maintain stability in the

presence of modeling errors the mapping det {I + K(s)G(s.&)}i
se Cpyp, 0 S € 5 1 Must not pass through the origin. Two

sufficient conditions, developed from Eq. (8), guaranteeing true
closed-loop asymptotic stability are34

a{l + K(o)G(jw)] > o[K(w)AG(w)] for0 < w < e (10)
and
gl + (K(@)G(o) '] > S[E(w)] for0<swse (qyy
where s = jw and E(jw) is the input multiplicative error
E(jw) = (K(jw)G(jw)  (K(w)AG(jw)) (12)
= G l(jw)AG(jo) if K(jw) and G(jw) are nonsingular

Sequential Loop Closure

Sequential loop closure is defined here as the use of any
appropriate synthesis technique to design loops in stages to yield
the final multivariable control law. For example, classical
control techniques can be used to close scalar loops one at a
time, or of more interest here, modern multivariable control
techniques can be used in stages. However, care must be taken
because the selection and closure of a specific loop can both
adversely affect the stability and performance already designed
into previously closed loops, as well as influence the stability
and performance in subsequent loops yet to be closed. Thus,
the key to success is the selection and order of the loop closure
and this is typically based upon a fundamental understanding of
the plant dynamics. Specific examples of this approach can be
found in Refs. 5 and 9. One siwation where sequential loop
closure is particularly effective is where frequency separation
exists between euach sets of loops. In this particular, but
common situation, most modern multivariable synthesis
methods would lead to undesirable results if used to close all
loops simultaneously. This is due to the fact that the loop
transfers are forced to be closely spaced at crossover, which
yields strong coupling and destroys any frequency separation
naturally present.
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The analysis to foliow is developed for the two-step loop
closure depicted in Figures 2 and 3; however, the approach can
be generahzed 1o multi-siep loop closure settings. The direct
application of Nyquist stability and stability robustness theory 1o
the complete feedback loop in Figures 2 and 3 offers very hittle
information about the stubility and stability robustness at each
loop closure step which is of paramount imporiance during the
synthesis. To obtain this information, Nvquist theory may be
apphed at each step in the loop closure process.

But first, it will be shown that the block diagram
structures in Figures 2 and 3 are special cases of the structure in
Figure 1. Consider the following partition of the sysiem in
Figure 1, or )

¥e, (8) ;
. J)’I(S)] )'c(5)={ - - Uﬂ*)‘
)(R) L yz(s) (S) f U(S) L UZ(S)

_1 Kn(s) Kiafs) o | Guifs) Gia(s)
K& =1 Kais) Kzz(s)} G(S)_[sz(S) Gzz(s)}

(13)

AG(S) = {AGH(S) AG]:(S)}
AG21(s) AGaa(s)
The block diagram structure in Figure 2 is obtained by selecting
K21(s)=0 K22(s)=0 (14)

G12(s) = AGy2(s) = 0 G22(s) = AG22(s) = 0

leading to [
_ Gi(S)}
K(s) = [Ki(s) Ko(s)] O =lcos)l s

ol
AG(s) = [AG'(S)J
AGg(s)

The block diagram structure in Figure 3 is obtained by selecting

Kja(s) =0 K2i(s) =0 (16)
leading 10
S 1Kitsy 0 2] Gis) Gials) ]
K(s) = . G(s) =
=0 Ko O Gaits) Gots) | 17

AG(s) =| 4G Ac.nm}

LAGoi(s) AGo(s)
Stability At Each Loop Closure
Let Py and Pg denote the number of poles of K(s) and
G(s), respectively, in the right-half plane, or -
P=Pg + Pc, (18)

' PK can [x. \cpdmtcd into the number of cox‘npx.ns.nor polcx in the

right-half plane in the inner Ioop compensiton, P,\ and 1n the
outer loop compensation, PR or- :
Pk =Pk; + Pk, (19)

Further, Pg can be separated into the number of plant poles in

the right-half plane 1o be siabilized with the inner loop, PG and
with the outer loop, PGo or

PG =Pg, + Pg, 2m
Applying Nyquist theory 10 the inner loop closure yields
Ni(0.det[1 + K(s)Gj(s)).Crup) = Z; - P, @21

where N (O.det [T + Kis)G,(5)].Cryp? denotes the number of
encirclements of the origin by the inner loop Nvquist diagram,
Z; 15 the number of closed-loop poles of the inner loop svstem in
the right-half plane, and P, is the number of open-loop poles of
the inner loop system 1n the right-half plane. Although closed-
loop stabifity of the complete feedback system is ulimately
desired, requiring Z; = (0 at this loop closure step is not
necessary because the unstable poles represented by Z; are 10 be
stabilized by the outer loop. Using the notation in Eqs. (18) thry
(20), Z; and P, are given as

Zi= PGQ Pi=Pg;+Pg (22

and the encirclement requirement in Eq. (21) becomes
Ni=-Pg; - Pg, (23

Next, applying Nyquist theory to the outer loop closure
yields

No(0.det{I + K(s)Gq($)].CrHP) = Zo - Po (24)

where N, (0.det [T + K(s)Gy(5)).Cryyp) denotes the number of
encirclements of the origin made by the outer loop Nyquist
diagram, Z, is the number of closed-loop poles of the outer loop
system in the right-half plane, and P, is the number of open-
loop poles of the outer loop system in the right-half plane. Since
this is the Jast loop closure, the requirement

Zo=0

is necessary for asympiotic siability of the complete system.
Using the notation in Eqs. (18) thru (20), P, is given as

= No=-Po (25)

Po =Pk, + P 26)
and the encirclement requirement in Cq. (25) becomes '
No=-Pko-Pg, e

In summary, for closed-loop asympiotic stability of the complete
feedback sysiem, the inner and outer loop Nyquist diagrams
must have the correct number of encirclements of the origin,
namely -Pg -Pg, and -Py -Pg . respectively.

To undcr:ldnd hOW the inner and outer loop cnurclcmem
requirements relate to the encirclement requirement for the
compleie feedback loop in Figure 1, consider deifl + K(s)G(s)|
and the partitioning in Eq. (13), or

K11G12+K 112G

+KG T1+K11Gy+K 262y 1
ded1+RG) = dCL [+K21G12+K22Ga2 | (28)

L K21G11+K2262)
Using the identity for the determinate of a pnrxilioncd matrix
yields
det|1+KG] = det[1+K;1G11+K 12G211det]1+K21G12+K22G23-
(K21G11+K22G2)(+K 11G11+K12G21) (K 11G12+K 12G22) |
(29)
For the block disgram siructure in Figure 2, Eq. (29) reduces 1o
det]t + KG| = det]] + K Gildet[] + KoGoll + KiG)''] - (30

From Figure 2, the effective ransfer function between y,, and u,,
with the inner loop closed 1s

= Go(l + KiGj)'! @3
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Thus, the result in Eq. (30) becomes
det1 + KG| = det(I + KiG;Jdet(I + KoGol 32)

Rut from the block diagram in Figure 3, Eq. (29) reduces to

det| [+K G} = det{1+K,G,ldet{1+Ko{Go-Gai(1+K,G) 'K Gio |
(33)

From Figure 3, the effective transfer function between y, and ug
with the inner loop closed is

Go = Go - Goill + KiG)'K,Gig 34

Thus. Fq. (33) also becomes identical to Eq. (32).

The result in Eq. (32) is the key to relating the
encirclement requirement at each step to the encirclement
requircment for the complete feedback system.  Using the
conformal mapping identity for the product of two functions,3
Eq. (32) yields

N =N+ Np (35)

Thus, the number of encirclements of the origin by the Nyquist
diagram for the complete feedback loop equals the sum of the
number of encirclements for the inner and outer loop systems.
Fach loop closure contributes to the "unwrapping” of the origin.
Further, by substituting Eqs. (23) and (27) into Eq. (35), it can
be seen that closed-loop asymptotic stability as indicated by Eq.
(3) is implied if the individual encirclement requirements for the
inner and outer loop systems are achieved.

Just as in the case of single-loop closures, Eq. (32) can
also be used to relate the Nyquist diagram at each "multivariable”
step to the Nvquist dingram for the complete feedback system.
Any point on a Nyquist diagram is a complex number with
magnitude and phase. Thus, if one defines

det[1 + K(Gw)G(jw)] = Mel® (36)
det[I+Ki(j)Gi(jw)} = Miel®i  det[T+Ko(jw)Go(jw)] = Mgei®o

the magnitude and phase contributions from the inner and outer
loop Nyquist diagrams to the complete Nyquist diagram are
M=MM, ,8=0;+8, 37
One common situation where matters are simplified is
when frequency separation exists between the inner and outer
loops. Suppose the inner loop crossover frequencies are in a
higher frequency range and the outer loop crossovers all lie in a
lower frequency range. Further, suppose the inner and outer
loop shapes are as shown in Figure 5 where both loops are well
attenuated above their respective crossover and the inner loop
svstem is either type 1, 0, or -1.1!

) e typel
1[KoGu)i‘]l
KiGili

type 0 e
\\ ; — \\ — 0
——— e —— _.'

fower lrcquency range

higher frequency range

ype -1

Figurc 5. Inncr And Quter System Loop Shapes

For frequencies well above the outer loop crossover
I Koli@)Goljw) iyl « | (38)
and Eq. (32) becomes
detl + KG] = det{! + K,G)] (39)

indicating the Nyquist diagrams for the complete feedback
svstem and the inner loop system are approximately identical.
On the ather hand, tor frequencies well below the inner loop
crossover

;o : <1 lave
K GonGan ]! ij IKG, (M, for type | K,G,

NK GG Gonly) = IKOGO)] for type 0 KiGi 40)
K (G@)Gy oyl =1 jw (KGOl for type -1 KiG,

where FEE],(jm) is the remainder left over after 1/jw or jw is
factored from K,(ji)G,(jw) and Eq. (32) becomes

det[1 + K(GanGjw | = det( J(L) RG(]det(T + Kolj0)Goljw)]
for ype 1 K\G;
4N
det{[+K ()G (jw) | = det[I+K, (0)G(0)}det(1+Ko(jw)Goljo)]
for type 0 KiGi

det(l + KGm)G(w)] = det|T + Ko Gy(jon
for type -1 K\Gi

indicating the Nyquist diagrams for the complete feedback
system and the outer loop system are approximately identical for
type -1 K,G;, different by only a constant scale factor for type 0
K,G;, and different by a frequency dependent scale factor for

type | KiGi~
Stability Robustness At Each Loop Closure
Let PGT denote the number of poles of Gt(s) in the

right-half plane, or
Pr=Px +Pgr (42)

PGT can be separated into the number of true plant poles in the
right-half plane to be stabilized with the inner loop, PGiT' and

with the outer loop, PGE:q-' or

Pgr=Pgip + PG;)T @3)

Applying Nyquist theory after the true inner loop closure
yields
Nip(0.de{l + K(s)G,p(s)L.CruP) = ZiT - Pir (44)

where N;.(O.det [T + K(s)Gir()].Crpp) denotes the number of

encirclements of the origin by the true inner loop Nyquist
diagram, ZiT is the number of true closed-loop poles of the inner

loop system in the right-half plane, and PiT is the number of true

open-loop poles of the inner loop system in the right-half plane.
Again, requiring ZlT = 0 at this loop closure step is not

necessary. Using the notation in Eqs. (19), (42), and (43), Z,T
and P‘T are given as

4t = Poor Pir =Pk, + Py (45)
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and the encirclement requirement in Eq. (44) becomes

N =- Py, - Por (46)
If
1. The nominal inner closed-loop system satisfies the
encirclement requirement N, = - PKl - Pg, (see Eq. (23)),
and

2. The required number of encirclements of the origin is the
same for both nominal and true inner closed-loop systems
or PG‘ = PGxT (see Eqgs. (23) and (46)),

then the modeling errors AG,(s) are guaranteed not to change the
number of unstable poies when only the inner loop is closed if

dedl] + Ki(5)Gi(s.&)]ls e Cryp,0se<1%0 (47

Two sufficient conditions, developed from Eq. (47),
guaranteeing the above are

afl + Ki(j0)G,(jw)] > o[Ki(0AGi(jw)] forO<w <o (4g)

and
all + (Ki(G)Gi(jo)) "1 > o[Eijw)] for0SwsSe (49

where E;(jw) is the inner loop input multiplicative error

Ej(jw) = (Ki(w)GiGw))  (KiGw)AGi(jw)) (50)
= G;1(w)AGi(j) if Ki(jw) and Gj(jew) are nonsingular

~ The validity and importance of Considcring stability robustness

with only the inner loop closed may be unclear at this point, but
it will be shown that the requirement in Eq. (47) is an integral
part of the stability robustness requirement for the complete
feedback loop.

Next, applying Nyquist theory to the true sysiem, after
the outer loop closure yields

Nop(0.det[l + Ko($)Gop(91.CRHP) = Zop - Por (51

where No(O.det {1 + KO(S)G'OT(S)].CRHP) denotes the number

of encirclements of the origin by the true system'’s outer loop
Nvquist diagram, Z,,.. is the number of closed-loop poles in the
right-half plane after the outer loop closure, and POT is the

number of open-loop poles in the right-half plane of the true
sysiem before the outer loop closure. For the block diagram
structure in Figure 2, G;T(s) is defined as B

G‘OT = G(yr(] + KjGrr)-‘ (57)

which accounts for modeling errors in both G;(s) and G,(s),
while for the block diagram structure in Figure 3, G;,T(s) is

defined as
Gor = Gor - Garll + KiGiT)'lKlGioT (53)

which accounts for modeling errors in Gi(s), G;o(s), Gei(s), and
Gy(s). Again, the requirement

Zop=0

is necessary for true asjnﬁb;otic stability of the complete
feedback system. Using the notation in Egs. (19), (42) and
(43), P"T is given as '

= Nop=-Por (54)

PQT = PKO + pGOT (55)

and the encirclement requirement in Eq. (54) becomes

Nor=-PK, - P&
o177 Ko™ TGor (56)
If
1. The nominal outer closed-loop system 1s asymptotically
stable or N, = -PKO - PG'O (see Eq. (27)), and
2. The required number of encirclements of the origin is the
same for both nominal and true outer closed-loop systems
orPg, = PG("T {see Eqs. (27) and (36)),
then true closed-loop asymptotic stability is guaranteed if
det{I + Ko(s)Gols.8)llse Cryp. 0ses1%0 (37)
where for the block diagram structure in Figure 2, Go(s.€) is
defined as }
Go(s.8) = Go(s.e)(1 + Ki(s)Gi(s.e))"! (58)

while for the block diagram structure in Figure 3, G (s.€) is
defined as

Go(s.8) = Go(s.€) - Goi(s,e)I + Ki()Gi(5,6)) ' Ki(s)Gio(s.€)
(59)

Two sufficient conditions guaranteeing Eq. (57) are

all + Ko(j)Go(ie)] > STKo(0)AGoGw.e)]  (60)
for0sw<e and 0<ses!
and :
ofl + (Ko(G)To(w.e))!] > SlEj,e)] 61
for0Sw<Se and 0Ses!

where for the block diagram structure in Figure 2, the effective

outer loop plant and additive error a'o(s.e) and AG_'O(s,E).
respectively, are defined as

Gols.6) = Go(s)(T + Ki()Gi(s.€))"! 62)
AG(5.8) = AGo(s)(1 + Ki(s)Gi(s.6))")

while for the block diagram structure in Figure 3, E}'O(s,e) and

AE}‘O(S.E) are defined as

Go(5.8) = Go(s) - Goi(s.£)1 + Ki(s)Gi(5.8) TKi(5)Go(s.8)
AGo(5.8) = AG(s) - Goi(s,e)(1 + Ki(s)Gi(5.6))" ' Ki(5)Gio(5.8)
(63)

and where E (jw.€) is the effeciive outer lbop input
multiplicative error :

Egjw.e) = (KoGo)Goliw.e)) ' (Ko(i)aowe)  (6a)
= Gy (j0.8)AGo(j0.e) if Ko(jeo) and Go(jeo.€) are nonsingular

Although conceptually the same as the standard singular value
robustness tests, Eqs. (60) and (61) are more complicated
because of the modeling errors present in more than one location
in the feedback system. Unfortunately, the dependence upon ¢
can not be eliminated in a simple mannét. o

To understand how the inner and outer loop Nyquist
diagram warpings relate to the warping of the complete feedback
loop in Figure 1, consider det|/l + K(s)G(s,g)} and the
panitioning in Eq. (13). Similar to the development in Eqgs. (28)
thru (34), det[] + K(s)G(s,£)] can be expressed as

det{1+K ()G (s.8)] = det[1+K;(s)Gi(s.£)1det] 1+ Ko(s)Go(s.€)]
(65)
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The result in Eq. (63) is the key to relating the warping of the
Nyquist diagram at each step to the warping for the complete
feedbuack systemn. The complete nominal feedback system is
robust against modeling errors as indicated by Eq. (8) if the
warpings for the inner and outer loops satisfy Egs. (47) and
(37), respectively. Note that although achieving the individual
singular value robustness requirements in Eqs. (48) and (60) or
(49) and (61) implies the requirement in Eq. (8), it does not
necessarily imply that the the requirements in Eqs. (10) and
(11), respectively, are satistied.

Eq. (65) can also be used to relate the Nyquist diagram
warping at each step to the warping for the complete feedback
loop. The magnitude and phase of a point on the Nyquist
diagram warping for the complete feedback loop is given bv the
the corresponding points on the inner and outer loop Nyquist
diagram warpings similar to the idea given in Eq. (37).

For the important special case involving sufficient
frequency separation between the inner and outer loops, suppose
that the loop shapes shown in Figure 5 are not significantly
altered by the inclusion of the modeling errors. In other words,
for frequencies well above the outer loop crossover

IKo(j)Goljw.e)lil « | (66)

and Eq. (65) becomes

det{I + K(s)G(s,e)] = det[I + K(5)Gi(s,e)] (67)

indicaiing the warping of the Nyquist diagram for the complete
feedback system and the inner loop system are approximately
identical. On the other hand. for frequencies well below the
inner loop crossover

||K|(_]O))GIQ(L),E)]|J j(l) [KG,(O.EHU! for [ype 1 K|G|

I[Kl(jm)Gl(jmve)]U] = I[KI(O)G((OvE)]UI for type O KiGi
K (o)GiGoe)ij =1 jo (KG,0.8)]ijl for type -1 KiGi

(68)

where }z(_]i(jm,s) is the remainder left over after 1/jo or jw is
factored from K;(jw)G;(jw,e) and Eq. (65) becomes

det| 1+K(jw)G(jw.e)] = det] JJ(;E.((),E)]dez[I+K0(jw)G'o(jw.e)]

for type 1 KiG;j
yp ™ (69)

det{T+K(jw)G( jw.e)]=dct[I+Ki(O)Gi(O,s)]dct[I+K°(jcu)G},(jm,e)]
for type 0 KiGi

det(I + K(jo)G(jo.£)] = det[T + Ko(jw)Go(jo.€)]
for type -1 KiGi

indicating the warping of the Nyquist diagram for the complete
feedback system and the outer loop system are approximately

identical for type -1 K,G;, different by only an € dependent scale

factor for type 0 K;G;, and different by a frequency and €
dependent scale factor for type 1 K,G;.

Example

The example to be considered involves the longitudinal
flight control of a large, flexible aircraft. Controlled inpurs
consist of elevator detlection 8 and canard deflection 8¢ while
responses of interest include the pitch rate measured at two
locations on the fuselage, q; and q5, and the surge velocity u.
The model for the aircraft dynamics is 1248 order and the state
space description is given in the Appendix. Frequency
responses for elevator deflection are shown in Figures 6 thru 8.
The open-loop eigenvalues consist of
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0.033 phugoid mode
-0.043 phugoid mode
045512 short period mode
-0.441j6.0 15t aeroelastic mode
-0.224j11.0 20 aeroelastic mode
-0.362j11.0 3 aeroelastic mode
-2.64j13.0 4'h aeroelastic mode

From Figures 6 thru 8 and the open-loop eigenvalue data,
observe the low damping of the short period and aeroelastic
modes, the significant aeroelastic contributions 1o the pitch rate
responses. and the unstable phugoid mode.

The flight coniro] design objectives are 10 increase the
damping of the short period and acroelistic modes, reduce the
aeroelastic contributions 1o the pitch rate responses, and stabilize
the phugoid mode. With the existing frequency separation
between the phugoid mode and the other modes, the flight
control synthesis will be accomplished in a two-step approach as
indicated in Figure 2. The inner loop closure consists of angular

rates qy and g feed back to 8¢ and 8¢, respectively, while the
outer loop closure consists of speed u feed back to 8g.

The inner loop compensation was synthesized in Ref. 9
and is briefly reviewed here. First, the q2/8¢ loop is closed 10
improve the 18 aeroelastic mode damping. Next, a &g 1o 8¢
crossfeed is introduced to reduce 13 aeroelastic mode excitations
from 8g. Finally, the q/8g loop is closed to improve the short
period damping. Ref. 9 neglected the 20d and higher aeroelastic
modes, thus a noich filter is introduced here at 11 rad/s 10 reduce
the significant 20d acroelastic mode contribution and a low pass
filter with o bandwidth of 60 rad/s is introduced for auenuation
of higher frequency aeroelastic modes. Inclusion of the notch
and low pass filiers introduced approximately 15 deg of phase
lag at the 13 aeroclustic mode frequency. With this, the inner
loop compensator is

K ()= 00 s2+47s+1167-05 0 ] rad

$460 (243 25411610075 .05 Jradls™ (9

and the block diagram structure is shown in Figure 9, where §
represenis the pilot stick inputs.

vol8) = ufs)

(surge velocity)

) = [Byys) Beds)?

i 1
}A‘S,g[mmj
CRES

uds) = fits)

Bigs) = Bis) + 8uils)
Bets) = f(s)
Figure 9. Inner Loop Block Diagram

Figures 6 thru § show the effect of the inner loop closure
on the frequency responses and the intermediate closed-loop
eigenvalues are

0.031 phugoid mode
-0.042 phugoid mode
-0.69%j1.1 shon period mode -
-0.75%56.1 1%t acroclastic mode
-0.22%511. 2nd jeroctastic mode
-0.36%511 31 seroclastic mode
-2.6%j13. 110 yeroclastic mode
171 compensator mode
-60. compensaior mode

Note the increased short period and 18 aeroelastic mode
damping as well as the more rigid-body like pitch rate frequency
responses.  Also note the relauvely unaffected phugoid
characteristics.

The Nyquist diagram corresponding to det]] +
K()Gj(s)] is shown in Figure 10 and note that N; =0, Z, = 1,

and P; = 1. Further, the intermediate singular value
“robusiness” (see Eq. (49)) is ploued in Figure 11.
0.8
{
0.6!

O.AI

0.2

imag
>

28 Acroclastic Mode
LRSI Mod

18 Aeroclaslic
Made

0.5 1 1.5 2

rcal
Figurc 10. Inner Loop Nyquisi Diagram Using det[l + K;G;)
50 Pty

T T 7Y

40

30

mag. (db)

102 1041 100 1 e

freq. (rad/s)
Figure 11, Inner Loop Singular Vialue Robusiness
Characiensne gl + K,G,'Y

Now, the outer loop consists of constant gain feedback
of speed tu), or the outer loop compensaior is

C = rad
Ko(s) = 0.0001 (ﬂ/s) )

and the block diagram is shown in Figure 12, Figures 6 thru &
show the effect of the outer loop closure on the frequency
responses and the final closed-loop eigenvalues are

AL0067%0.027
-0.69%j1.1

phugoid mode
short period mode

-0.75£36.1 13 acroelastic mode
-0.22%511. 20d jieroclastic mode
-0.36%j11. 3r¢ aeroelastic mode
2,613, 4 qyeroelastic mode
-1.7%11. compensator mode
-60. compensator mode

Note the stabilized phugoid mode and the relatively unaffected
higher frequency modes.
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The Nvquist diagram corresponding to det[l +
K (8)G{s)] is shown in Figure 13 and it is seen that Ny = -1,
Z,=0,and P, = 1. Further, the singular value robustness (see

Eq. (61)) with € = O for this scalar loop is plotted in Figure 14.
[t the block diagram structure in Figure 12 is recast into
the format of Figure 1, then the Nyquist diagram corresponding
to the complete feedback system or det[1 + K(s)Gts)] is shown
in Figure 15. Note the aggregate ot the inner and outer loop
Nvquist diagrams closely matches the complete Nyquist
diagram. Tt is insighttul o see how each loop closure
contributes to the shape of the overall Nyquist diagram and the
required number of encirclements of the origin. Further, the
singular value robustness (see Eq. (11)) is shown in Figure 16.

Y
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1517

0.8

0.6;

-0.4

-0.6

0.8

100

100

2 e e

1 0.5 0 0.3 1 1.5
real
P — det|T + KG|
- = = = de{l+ K.G“I
=t~ detfl + KoGol
Figure 15. Nyquist Diagram Comparisons

-0
102

101 100

freq. (rad/s)

all + (KGY1)
all+(KiGy'!)
== gll+(KeGo)')

Figure 16. Singular Valuc Robustness Test Comparisons

1

T T T T T T T T YT

102 101 10v 8] 1
freq. (rad/s)
——— glKG\] and o(KGil
— — — — alKGo} =8[KuGol = KoGo!
— === g[KiGo} =0[KoGo] = KoGol
Figure 17. Inner And Outer Loop Shapes



Note the contributions from the inner and outer loop to the
complete feedback loop. Here, the match occurs because of
several special features in the loop shapes as shown in Figure
17. With the block diagram structure in Figure 2 or 12, the loop
gain is given as

KG = KiG, + KoGq (72)
Further, for this example, K,G, and K,G,, are approximately
equal as indicated in Figure 17. Therefore, as seen from Figure
17, the higher frequency range maich occurs because K G is
sufficiently attenuaied relative 1 K;G;, or

KG = KjG. (73)
Also, as seen from Figure 17, the lower frcqucncy'rangc match
occurs because K;G; 1s type -1 (small K;G; relative to KGg), or

KG = KqGo (74)

Conclusions

It has been shown how the nominal, multivariable
Nyquist diagram and it's continuous warping to the true shape
for the overall feedback system is related 10 the contributions

from the inner and outer Joops. The encirclement requirement of
the overall feedback sysiem to assure nominal asymptotic

stability is converied 10 the encirclement requirements for the

inner and outer loops. Further, to assure robustness against
modeling errors, the requirement of avoiding the origin, when
the Nyquist diagram is warped from the nominal shape to the
true shape, is converied to similar requirements for the inner and
outer loops. The implications for analysis and design are that
the overall stability and robustness characteristics can be
decomposed into contributions from the inner and outer loops
which can offer guidance in feedback design.
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Appendix
The aircraft model is
x = Ax + Bu (75
y = Cx
where
q; (rad/s) 'I 8 (rad)
y =| qp (rad/s) u=
u (fus) J d¢ (rad) (76)
=[ Al A ]
Ayl Axn
-1.45)e-2  1.935e+1 .3.220e+1 -1.907e+0 0 0
-1.487¢-4 -4.285e-} 0 1.025¢40 -4.223¢-3 .| .445¢-4
A= 0 0 0 Le+D 0 0
-1.090e-4  -3.430¢+0 0 -8.335¢-1  .6.625¢-2 -3.814e-3
4] 0 0 0 0 1.e+0
4.227¢-1  -1.072e+3 0 -7.935e+1 -3.536e+1 .6.028e-]
i 0 0 0 0 0 0
4.487¢-2 1.755¢-3 2.170e-3  1.036e-4 .2.053¢-3 -3.391e-5
A= 0 0 0 0 0 0
-5.160¢-2 2.950c-2 8.544¢-2  4.126c-3  -3.777¢-2 -1.190e-3
0 0 0 4] 1} 0
L -6.475¢+0 -1.647c.1 2.554¢+1 5.435¢c-1 8.633¢+0 -1.171c-}
i 0 0 0 0 0 0
2.773¢-2  3.552¢+] 0 1.858¢-1 5.801e+0 1.395c-1
Ag = ) 0 0 0 0 0
-6.653¢c-2 1.475¢+2 0 4.567e+0 2.880e+0 .7.236e-2
4] 0 0 0 0 [4]
L 3.078¢-5 1.014¢-2 0 9.965¢-5 6.696¢-3  -1.954c¢-4
r 0 l.e+0 0 0 0 0
S1.766c+2 -5.054c+0 2.714c+0  6.710c-2  4.643c+0  6.646¢-2
Ao 0 0 0 1.0 0 0
- 1.425¢+1  2.243c+0  -1.156¢c+2 .4 246¢c-1 1.425¢c+0 -1.507c-}
4] 0 0 0 0 1.e+0
L -3.999¢c-2 | 440c-3 2933c.3 .1.641c-4 .1.211e+2 .7.226c.]
™ 1.477c41 o 7 [ o 0 tee0 T
<6.384¢c-2  -1.248¢-2 0 0 0
0 0 4 4 0
-5.321e+0  8.392¢-1 1.e+0 T.e+0 0
0 0 0 0 0
R= -0.230c+2 -6.211e+2 C = 0 -2.100c-2 4]
0 0 o 0 0
-8.841c+] -1.107c+1 0 -2.300¢-2 0
0 0 0 0 [
2.529¢+2 -4.571c+] 0 -3.200¢-2 0
0 0 0 0 0
L 4.445¢.2 -1.521e+0 - 0 -3.400¢-2 0 .
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Abstract
Frequency weighted internally balanced (FWIB) truncation is
briefly reviewed. A previous frequency response error analysis
for FWIB truncation is extended and an exact error bound for
the special case of order reduction by one state is presented in
terms of the controllability-observability measure used in
selecting the coordinate to truncate, as well as two additional
frequency dependent variables. The two additional variables are
shown 1o be small when the controllability-observability
measure is small, justifying the reduction technique based only
upon consideration of the controllability-observability measures.
An approximate error bound for the general case of order
reduction by more than one state, under the assumption that only
small controllability-observability measures are truncated, is
presented. FWIB residualization is presented and a frequency
response error analysis yields results similar to that found for
FWIB runcation. Numerical examples are given to support the
error analysis results, as weil as to stress that FWIB truncation
and residualization can be used in a coordinated manner to
achieve higher accuracy than that achievable from either
technique used alone.

Introduction

Models developed from the governing physical
principles are often of high dynamic order,!-> complicating the
direct use of the model in the intended application. For example,
control taw synthesis is a common application for dynamic
models. However, many modern linear control synthesis
techniques produce a controiler with dynamic order at least equal
1o the plant dynamic order.3* This is unacceptable for controller
implementation. Thus, order reduction of dynamic models is of
extreme importance.

Here it is assumed the system that is modeled will be
actively controlled in a feedback loop such as in Figure 1, with
responses y(s), control inputs u(s), response commands y.(s),
plant transfer function matrix G(s), and compensator transfer
function mawrix K(s). A reduced order model for the plant,
GRg(s) {or for the compensator, Kg(s)), should preserve the key
frequency domain characteristics of the higher order model, -7
and an order reduction technique specifically tailored for this
task is frequency weighted internally balanced (FWIB)
truncation.3

In this technique, coordinates reflecting small measures
of weighted controllability-observability are truncated based
upon the engineering argument that this procedure will yield a
reduced order model that matches the frequency response of the
higher order model in the critical frequency range, as numerous
examples have demonstrated.8:9 As of yet, however, there
exists no rigorous theoretical justification for this technique, that
guarantees a small error in the critical frequency range, similar to
the result discovered for unweighted internally balanced (IB)
truncation.5:10 Enns3 did consider a frequency response error
analysis of this technique, but his result was left so cumbersome
that its utility was limited. The first goal of this paper is to0

Y.(s) . u(s) y(s)

—>i—> K(s) —®1 G(s) =

Figure 1. Generic Feedback Loop
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extend the frequency response error analysis of Reference 5 for
FWIB truncation, so as to develop a theoretical justification for
this weighted technique.

Recall from classical truncation and residualization
theory that truncation is most appropriate for eliminating lower
frequency dynamics, while residualization is most appropriate
for elimtnating higher frequency dynamics, relative o the
frequency range of interest.8 Reference L1 recently considered
this point and showed that all the properties existing for IB
truncation also exist for IB residualization, including an upper
bound on the frequency response error identical to that for IB
truncation. In light of these results, a second goal of this paper
is to establish FWIB residualization as an acceptable order
reduction technique, to be used in conjunction with FWI[B
truncation.

Truncation And Residualization With FWIB States
Consider a finite dimensional, linear, time invariant state
space model representing the higher order plant in Figure 1, or

(1) = Ax(t) + Bu(t) )
y(t) = Cx(t) + Du(t)

Also consider an input weighting filter

iwl(‘) = Awnxwl([) + Bwia([) (2)
u(t) = Cuwixy,{t) + Duwid(1)

and an output weighting filter

Xwo(D) = AwoXwo(t) + Bwoy(t) 3
1(t) = CwoXwolt) + Dwoy(t)

cascaded with the higher order model in Eq. (1), as shown in
Figure 2, where G,,(s) and G,,(s) are the corresponding
weighting transfer function matrices, respectively. The input
weighting filter is used to adjust the frequency response such
that 8(jw) to y(jw) is approximately the same as u(jw) to y() in
the frequency range of interest, and is well attenuated outside the
frequency range of interest, while the output weighting filter is

used to adjust the frequency response such that u(jw) to Wjw) is

approximately the same as u(jw) to y(jw) in the frequency range
of interest, and is well attenuated outside the frequency range of
interest.

3(s) u(s) y(s) (s)
— Goi(S) b=t G(5) — Gy o(S)}F——

Figure 2. Frequency Weighted Model

~ The weighted controllability grammian X and the
weighted observability grammian Y for the higher order model

in Eq. (1) are defined as36 -
[ Xu X12]=_J_ R X G
X [ Ol X =gk ] XX gouo
= )

with  X(jo) = (jwl - Ax)"1Bx

Yii1 Y St o
y=| YU Yi2i_ 1 : .
[ Ya Yn } I B Y (w)Y(jwdw
with ¥(jw) = Cy(jol - Ay)!
0 Awi X L wi
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ay={ A 0

" BwoC Awa ) Cy={ DwC Cwn)

Further, if A, A, and A, arc asymptotically stable, then X
and Y are the unique, positive semidefinite soludons o

AxX + XAy +BxBy =0 )
AYY + YAy + CyCy =0
FWIB states X, which decompose the system such that
weighted controllability and observability are balanced, are
related to the state vector x in Eq. (1) by the ransformation’
x(t) = TX(1) (6)
where T is given as

T=VW ]

with V decomposing XY, Xy, and Yy as

T2
XY= VZZV'] X1 = VZ&VT Y =Vvigvl! (8)
I=Z.I, I =diag{o;) 0;20

Ec=diag[0ci} o 20 Z°=diag[ooi) Go; 20

12

ifoc;#0 and Go; #0

(note that the g;'s, O¢;'s. and g's are all real numbers) and W
Ce.
S

defined as
[ 00.

W = diag{w;) wi.-.l
1

ifcci=0 or Gp, =0 o
)

- Further, the partitions X;; and Y;; of the weighted
controllability and observability grammians are transformed such
that they are equal and diagonal, or

Xn=Yu=2 10y

A key result from References 5 and 10 conceming order

reduction is that the ¢;'s are measures of the controllability-
observability of the corresponding coordinates in X for the

weighted system. Therefore, states with larger values of o;
contribute more, in effect, 10 the weighted frequency responses.
(This is the claim that has not been rigorously justified with a
frequency response error analysis.)

Now assume the higher order model in Eq. (1) is FWIB
and suppose the higher order and reduced order models have
dynamic order n and ng, respectively. Further, suppose the o;'s
are ordered from smallest to largest. Partitioning of X;,Y; as

follows,
2 }:]2 0
XnYn==I = 2

0% an
L) = diag{oj) i=1,..n-ng
Iy =diag(gj] i=n-ng+1,..,n

0<o)<---S0;
leads to a partitioning of Eq. (1), or
0 _[ An An {xl(‘)] [Bl]
[ } | SO0 2 A

x2(1) An An
- x (1)
y( =[C Cz}[ xa(0) ] + Du(t)

where states x; are less controllable-observable and states x> are
more controllable-observable in the weighted, balanced sysiem.
Truncation of the states x; leads 10 the reduced model3

x2(1) = Az2x(1) + Bau(t) (13)
y(t) = Cax2(t) + Du(1)

Suppose the 6/'s in Eq. (8) are now ordered from largest
to smallest. Partitioning of X ;Y as follows,

) 2 [zho
XnYpy==I= 9
0Z%; (14)
Iy =diagloi) i=1,...ng
Iy =diag{o;) i=ng+1,..,n

01220520

leads 10 a partitioning as in Eq. (12), where states x; are more
controllable-observable and states x5 are less controllable-
observable in the weighted, balanced system. Residualization of
the states x; (provided Ajj is nonsingular) leads to the reduced

modeli2
X1(0) = (A11 - A2ABADX ) + (B) - AARB( (15)
y(®) = (Cy - CaA%A21)x(1) + (D - C2A%B)u(1)

FWIB Truncation Error Analysis
Let the transfer function error from order reduction be

defined as
E(s) = G(s) - Gr(s) (16)

The magnitude of the individual elements of E(jw) in_the

frequency range of inierest are an important measure of the

accuracy of the reduced order model.53.6 A closely related
measure is the individual elements of the weighted frequency
response error defined as

Ew(jw) = Guo(E(w)Gwi(jw) 17

Note that if G,j(jw) and G,,4(jw) leave the frequency response
unaffecied in the frequency range of interest and provide high

antenuation otherwise, then E,, (jw) and E(jw) are essentially the
same in the frequency range of interest, and E, (jw) is small
otherwise. Finally, the maximum singular value of E, (jw),

denoted as S(E,,(jw)]. is an upper bound on the magnitude of
the elements of E, (jw).?
It can be shown that the weighted truncation error can be
expressed asS.12
Ew(j) = Cu(je)a ™ Go)Bu(jo) (18)
where

Cu(jw) = Guo(j)Cw) (19

Cjw) = Cj + C2d(w)Aa;
AQw) = jwl - Ajp - Ap®Gw)Az)

Bu(jw) = B(j)Gwi(jw)
B(jw) = B + A120(jw)B;
D(jw) = (jwl - Az}

Further, the maximum singular value of the weighted error can
be expressed as

— - Sl o~ _].~- ~
GEu]=A[a BuBoa' Culul (20)
where A denotes the maximum eigenvalue. By expanding the

products B, Gw)B,, (jw) and Cojw)C, (jw) and using the
wransformed, partitioned Eq. (5), it can be shown that5.12
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=

BuBu = A(Z) + inGjel - ALY ICLEBTT ()
(Z1 + BCuiGol - Aw(Xap1)a”
Colw =4 [T1 + (V121G - Aol 'Buol)
[+ E.BLO(-jcoI -Asoy (Y2 )A

where (X31)¢ and (Yy3)y are partitions of Xy and Y,
respectively, induced by Eq. (12), or
Y 1s)
le___{( 120

Xar={ KXo (X2 ] (Yi2h ] (22)

After substituting Eq. (21) into Eq. (20), S{E, (jo)] can be
rewritten as3-12

GAEW = A (T + M+ a7 (T + M)A 23)
(Zi+N+a™ (I +NDA))
M(jw) = B(w)Cwiljool - Awi)" 1 (X211 24)
NGw) = (Y121l - Awo) 'BuwoCljw)

where

Note that the terms M(jw) and N(jw) are functions of the
frequency weightings.

Forn-ng =1, then ) = 0, A(jw) = §(jw), M(jw) =
m{jw), and N(jw) = n(jw) all become scalars, and Eq. (23)
yields!2

GYEw] = (1 +bTb7a) (1 +cleta’) (o + m')(O1 +n) (25)

where
a(jw) = 8™ (w3 Gw) 26)
b(jo) = oy + m"(jw) c(jw) = 6y + n(jw)

provided o # - m"(jw) and & # - n(jw) for all frequencies.
(Note that ¢ is a real number, while m(jw) and n(jw) are
complex numbers, making it unlikely that 6| = - m*(jw) and 0,
= - n(jw).) Since the right-hand side of Eq. (25) represents a

positive semidefinite matrix (E,,(jw)Eq(jw)), taking the absolute
value does not alter the equality, or

SAEW =11 +b b al [l +clcta’ e loy +micloy +nl  (27)
S {1+16°16"1 < fal) {1 +IcTct « lal} 1oy + ml = IOy +

Substitution of the equalities fa(jo)l = 1, Ib-!Gw)b*(jw) = 1, and
le*1(jw)e "(jw)l = 1 into Eq. (27) yields the error bound for order
reduction by one state!2

S[Ew(jﬂ))] <2 ( lo) + m(jw)l + Iy + n(jw)l ]1/2 28)

Observe that the structure of this error bound is quite similar to
that for IB truncation’ and clearly reduces to the IB result when
the weighting filters are selected to be unity (i.e., m(jw) = n(jw)
= ().

Analysis Of m(iw) And n(jw)

Recall that FWIB truncation is based upon the
engineering premise that states corresponding to small o;'s
contribute little to the frequency response in the frequency range
of interest, and thus can be eliminated. Does the result in Eq.
(28) imply that one should eliminate the state corresponding to
the smallest value for lo; + m(jw)! * lo; + n(jw)l 7 Numerous
examples,8.9 demonstrating that FWIB truncation yields an
accurate reduced order model in the frequency range of interest,
suggest that the current procedure of considering only the

relative sizes of the g;'s is sufficient in the sense that, states
corresponding to smaller values of o; also correspond to the

smaller values for lo; + m(jw)l « Io; + n(jw)l, and this is to be
shown next.

X(jw) and Y(jw) from Eq. (4) can be partitioned as
[ X(@)Gwi(iw) }

X(jo) =l -
Xwi{jw) (29)

with Y() = Guoljw)Vo(w) Yuoio)]
Xc(w) = (jul - A)Y'B Ya(jw) = CGl - AY! (30
Xi(@) = (ol - Aw) Bui Ywo(j0) = Cuoliol - Aug)!

Observe that the ijih element of )-(G(jm) is the frequency response
of the illl state x; from a unit impulse in the j& input uj and the

ijit element of Yg(jw) is the frequency response of the it output

y; from a unit initial condition in the jif state x;. Also, the fiu}

element of )_(w'(jw) is the frequency response of the il state Xwi;
from a unit impulse in the j input §; and the ijlh element of

?wo(jm) is the frequency response of the ilh output ¥y; from a unit
initial condition in the ji state Xwo;: Further, partition

Xg(jw), Yg(im), Xyi(jw), and Y,(jw) as

Xg,(jw) B Ko )

')?G(jm) = Xwijw) = 3D
Ecn(j(x)) Ywip(jm)
Yo(w) =[Yg, () Yo, o]

?wo(jm) =[ —Y.wol(im) ?wnq(jm) ]

where p and q are the dynamic orders of G,(jw) and G,(jw),
respectively.
- Using the notation in Eq. (29) and the ransformed Eq.

I= EIE f X (0)GwiG@IG iR (wido
. (32)

= EXEJ‘ ?‘a(jm)c’:vo(jm)cwo(jﬂ))?g(jm)dm

2r

XZI = —I—J ?w|(jw)G:vl(Jm)Ya(Jw)dm

Yi2= 7‘;{ f Va(jm)G:voUm)'\?wo(jm)dm

Finally, from Eq. (32) and using the notation in Eq. (31),

- o0 (33)

=L (¥ ()i
= f _ 1Gwo(jo) Y, Goni3de
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u<x:1).ij|s§lg{ IXwi ol X, (0)Gwijw)izdw -

oo

‘oo (35)
First, observe from Eq. (33) that for the smaller values

(Y12, < 51; f HG wo(Gw) Yo, Gz u?woj(jm)nzdw

of 0,, one can expect the nx (Jw)Gy,;Ga)liy's and
) GJ wi 2

lIGwo(jm)?Gi(jw)Hz‘s in Egs. (34) and (35) to be small, since the

integrand in Eq. (33) is always nonnegative.
Second, consider the special but common case of IB low
pass and high pass weighting filters with 40 db/dec attenuation

as shown in Figure 3. In this case, the ll)—(wii(j(o)!lz‘s and

Il‘?woj(jm)llz's in Egs. (34) and (35) have maximum value near

unity, depending upon the filter bandwidth, A. To show this, let

A, By, (a 2x1 matrix), C,, (a 1x2 matrix), and D,, be the state
space description of g(s), and then

Xwi(jo) = Xy(w) ¢ 1 with  Xu(o) = ol - Ay By (36)

Ywo() = Ye(jo) o I with Yy (jw) = Cy(jol - Ay)!
where for the low pass filter

172 :
(i = 05927 { (o) +2.4 ]
(o) +1)2 (Gw/A) - 0.41 (37)
12 . T
Tutioy = 05927 { (o) +2.4 }
(G + 1)2 |- (GoA) - 0.41)
while for the high pass filter .
- . ant? [1,4 [(jm/x)»,o,uq
Xu(jo) = ———=— —
(GoA) + 112 | 0.25(GwA) - 24} | (8)

Ve ) . an 17
utiar = —AAD) t L4 [ +0. 1}}

[Gon) + 1) | 025 (wA) - 2.4)

Observe from Eqs. (37) and (38) that the elements of X, (jw)
and Y, (jw), in a frequency response sense, consist of two real
poles with equal time constants, a real zero with nearly the same
time constant, and a Bode gain inversely proportional to A1/2,
Therefore, in this special case, the IXwi;Guliy's and
Il?woj(jm)llz's in Egs. (34) and (35) have maximum value near
unity, depending upon the filter bandwidth, X. Note that low

pass and high pass weighting filters with attenuation rates other
than 40 db/dec indicate similar results.

Gui(jw) or Gwo(jw) = gw(jw) 1
where gu{jw) is a scalar

2
Low Pass: | lgw(jw)  Ew(s) = —A
f (s+X)2
A -
®
40 db/dec

.
High Pass : lgw(w)l  guw(s) = 2. A
(s+A)2

4 )
0}

Ab/dcc

Figure 3. Low Pass And High Pass Weighting Filters

>~

The reason for this result is explained by noting first that

Yo (o)

e

gw(j®) = Cw(jool - Aw) !By + Dy
—_—

Xw(w) (39)

Now, since the state space description of g, (s) is IB, the

elements of B,, and C,, have equal magnitude or (B,); =% (Cw‘)i

(i.e., the situation where either B, or C,, is large and the other is

small is excluded).!3 Further, since g, (jw) provides unity
magnitude in the weighted frequency range and high atienuation
otherwise, then from Eq. (39) either of the following three
situations can occur:

1. large C,, and B, and small (jeI - AW)'l

2. intermediate C,, B, and (jool - A)"!

3. small C,, and B, and large (jol - A )"}
depending upon the magnitude of A, or the filter bandwidth A.

Therefore, the Il)_(wii(jm)llz's and H‘?woj(ico)llz's in Egs. (34) and
(35) are constrained to have maximum value necar unity,

depending upon the filter bandwidth A.
Although strictly a conjecture, it is felt that, using this

same explanation, the II)-(W,-i(jm)Ilg's and Il\-’wo.(jm)llz's in Egs.
(34) and (35) will be constrained 10 have maximum value near
unity, depending upon the filter bandwidih, for any general
weighting filter that provides near unity magnitude in the
weighted frequency range and high atienuation otherwise.

Based upon the above observations, small g;'s imply
small (X31); and (Y,5); from Eqgs. (34) and (35), and hence

small M(jw) and N(jw) from Eq. (24), at least for the special but
common case of low pass or high pass weighting filiers.

Therefore, if a state corresponding 10 a small g, is truncated,
then one is also inherently eliminating a state corresponding to a

small Ig; + m(jw)! * lo; + n(jw)!, and the weighted frequency
response error will be bounded according 10 Eq. (28).

ind For Th neral Cas
Unforwnately, the error bound for order reduction by
one state can not be applied successively 10 obtain an ervor
bound for the general case of order reduction by more than one
state. This is because the reduced order model from truncation
is not FWIB. This is seen from the transformed, partitioned Eq.
(5), or

AXgXR + XRAXg + BxgBXxp = Rx

(40)
A;/RYR + YRAyR + C;’RCYR =Ry
where
_[ Az BCwi } ={ B2Dw ]
AXg [ 0 Avi Bxr=| "B, 41
[ Az 0 ]
Avr { BwoC2 Awe Cyr =[ DwoC2 Cuo ]
L , { L (Y }
= R=
X21)2 X22 (Ya12 Yn
Ry =[ 0 'AZI(xl2)l} [ 0 -A;z(Ynz)xl
. Y=
-(X21h1A 0 (Y211A12 0

For the reduced order model 1o be FWIB, the residual terms Ry
and Ry would have to equal zero, and they are clearly not zero,
in general.
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Here, one could rebalance the reduced order model and
continue by eliminating one state at a time with rebalancing until
the desired reduced order model is obtained; however, a
different approach is considered here. Based upon the previous
development in Egs. (29) thru (39), note the residual terms Ry
and Ry will be small if a truly small o; is eliminated. In this
case, the model resulting from order reduction by one state is
nearly FWIB.

Denote m;(jw) and n;{jw) as the variables corresponding

to m(jw) and n{jw), respectively, in Eq. (24) for successive
order reductions by one state without rebalancing. Also denote
Ewi(jm) as the weighted frequency response error for each
successive order reduction by one state, or

S{Ew (] $2 {10y + myGall + 161 + 0, () )12 4oy

S{Ew ()] £ 2 { loi + mi) « Igj + ni(je)i }172
for i=2,..,n-ng

Now, the frequency response error E,, (jw), for the general case
of a reduction from n to ng in one step, is related to the errors

Ey,(w) by
n-np
Ew(j) = D, Ew(jo)
i=1 (43)

Taking the singular value of Eq. (43) and pulling the summation
outside the singular value yields
n- ﬂR
SlEw(@)] S 2, OlEwGw)
ial 44)

Finally, substitution of Eq. (42) into Eq. (44) leads to the
approximate error bound for the general case, or!2
n-nR
SEW(] <2 Y, {lo;+ miGw) «1o; + nie)l } 172
i=1 (45)

Since the reduced order models obrained by eliminating
one state at a time without rebalancing are nearly FWIB, the
argument put forth in Egs. (29) thru (39), that states
corresponding 10 smaller ‘vafues of o; also corréspond to the
smaller values of lg; + m;(jw)l « lg; + n;(jw)l, is applicable here.

Therefore, by eliminating the states corresponding to the smaller
values of g;, one is also inherently eliminating the states’

corresponding to the smaller values of 10; + m(jw)! « Ig; +

n;(jw)l, and the weighted frequency response error is
approximately bounded according to Eq. (45).

FWIB Residualization Error Analysis

Attention is now turned to the frequency response error
analysis for FWIB residualization. Much of the analysis and
notation appearing in this section parallels the frequéncy
response error analysis given in the previous section for FWIB
truncation. However, the reader is warned that the notation in
this section represents features of the residualization technique,
which are distinct from that of the truncation technique.

It can be shown that the weighted residualization error
can be expressed as!2
L, EnG0)=Cu(o 76w - 8760 BuGe) )
where

Bu(jo) = B(0)Gui(jw) Culj®) = Guoli)Ciw) a7y
B(jw) =By +And(w)B; C(jw) =Cy + Cid(jw)A 2
D(jw) = oI - Ay)!
A(jw) = jol - A2 - A DAL
A'(jw) = - A2 - A1 P(W)A 2

Further, the maximum singular value of the weighted error can
be expressed as

GUEL = (& - BuBua! -a ERY s

By expanding the products §w(jm)§;(jm) and C;Gw)&w(jm)
and using the transformed, partitioned Eq. (5), it can be shown
that!?

BuBu = AIZ2 + (Xintjol - ALYICLEBT] 9
{Z2 + BCwiGol - Aw) (Xai2)a”
a:véw = A.(ZZ +(Yi)(jol - Awo)-leoE]
(Z2+ T Bloljul - ALl (Y21)2)4

where (X4})7 and (Y ,); are partitions of X, and Yy, as in Eq.

(22). After substituting Eq. (49) into Eq. (48), S(E, (jw)] can
be rewritten asi?

SUEu] = A ({87 (ZrM)a a7 (Zpe M)A Hjwa (MM

(a7 (Z2eNA-8"! (TpeNa+wa™ (N-NT))] (50
where
M(jw) = Bj@)Cwi(jl - Aw) ' (X21)2 (51
N(j®) = (Y1202 - Awo) 'BuoC(jw)
Note that the terms M(jw) and N(jw) are functions of the
frequency weightings.
For n - ng = I, then £ = 0, A(jw) = 8(jw), A'(w) =

§'(jw), M(jo) = m(jw), and N(jw) = n(jw) all become scalars,
and Eq. (50) yields!2

GEw] = (a+p){a’ +q}(Gn + m)(on +0") (52
where

a(jw) = 5 Gw)s (w) - 8 (w8 (o) (53
p(j) = j08 (1 - {6n + m(@))! + {On + m"(j0)}]
q@) = j©8™ W)((on + ") + (G + n(w)} - 1]

provided o, # - m(jo) and &, # - n*(jo) for all frequencies.

(Note that G, is a real number while m(jw) and n(jw) are

complex numbers, {nrakiingrit unlikely that 0'“'-7- - m(jw) and G, =
- n*(jw).) Since the right-hand side of Eq. (52) represents a

positive semidefinite matrix (E,,(jw)Eq (jo)), taking the absolute
value does not alter the equality, or

GYE] =la+ plela® +ql+lo, + ml *lG, +nl (54)
< {lal + ipl) {1af +1qt) loq + ml * lgq +nl

Substitution of the inequality la(jo)l < 2 into Eq. (54) yields the
error bound for order reduction by one state!2

S[Ew(i®)] S k(j@) { 16 + mjw)l * 16 + n@)l |12 (55)
where
k(jo) = [ (2 + IpGal) + (2 + Iq(joo) } 172 (56)

Observe that the structure of this error bound is quite similar to
that for IB residualization!! and in fact reduces to the IB result
when the weighting filters are selected to be unity (i.e., m(jw) =
n{jo) = 0 and p(jw) = q(jw) = (). Note however, the scalar
multplying the o, term is now frequency dependent.
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An analysis similar to that given 1n Eqs. (29) thru (39)
for FWIB residualization!? shows that states corresponding 1o

smaller values of ¢; also correspond to the smaller values for lo,
+ m(w) *lo;, + n(jw)l. Therefore, if a state corresponding 1o a
small @; is residualized, then one is also inherently eliminating a

state corresponding to a small lo; + m(jw)! + I6; + n(jw)l, and the
weighted frequency response error is bounded according to Eq.
(55).

nalysi Ip(io)t And (et
One concern in the above argument is the values of
IpGw) and Iq(jw)l, especially as ® tends to infinity, since these
lerms contain jw in the numerator as seen from Eq. (53). A
direct analytical calculation of the maximum values of ip(jw)! and
Ig(jw)! is not practical; however, note the following observations
from Eq. (53). When o tends to zero, p(jw) and q(jw) tend to
zero, or!? _ ‘
wh—T 0 pUw =0 (57
lim q(w) =
w-0
When o tends to infinity, the limits of p(jw) and q(jw) from Eq.
(53) are indeterminate because jw tends to infinity and both the
terms 1 - {g, +'m(jw)}! « {0, + m*(jw)) and {o, + n"(w)}! -
{0, + n(jw)) - 1 tend 1o zero. By using 'Hopital's rule,12
B2DwiDy,B3
OnA22 (58)

llm q(]w) =24 C, DwoDwoC
OnA2

lim pw) =2 +

For intermediate values of w, a direct numerical calculation of
p(jw) and q(jw) for specific examples reveals that Ip(jw)l and
Iq(jw)! are typically no larger than the limits in Eq. (58).

ximaie Bound For The Generil Cas

Unfortunaiely, the error bound for order reduction by
one stale again can not be applied successively 1o obtain an error
bound for the general case of order reduction by more than one
state.  This is because the reduced order model from
residualization is not FWIB. This is shown by multiplying the
first of the ransformed, panitioned Eq. (5) by Z; on the left and
Z] on the right while multiplying the second of the transformed,

pantitioned Eq. (5) by Z3 on the left and Z, on the right where

10
7= [ I -A,«»AZ, } Za=| .AzbAq 0
] 0 1 (59)
This leads to
AXgXR + XRAxg + BxgBxg = Rx (60)
A-YRYR +YRAyp + C:/RCYR =Ry
where
Ax ={ (A1~ AADA) (B - AADBICui }
R 0 Avi (61)

(A22- A12A%hA2) 0
AYR=[ 2-An2 zz‘ 2] }
Buol(Cy - CoAMAL) Awg

_| (B1-A12A%B2)Dy;
B"R‘[ B

n
SE.(o)g D,

=T .1 )

CYR =| Duo(C) - C2A%4A21) Cuwo |
5 (X2 S (Y |
XR=[ 1 1.51 YR=[ 1 121 I
Xaun X2 (Yan Yo

" "
Rx), AnRADLX12)2A4 J
Rx = .
Awi(X21)2A%5 Aly 0
- - * .
Rxy; = (B - ApAYLB)Cwi(X212A% Al
+ ARAB(X122CL,i(B] - B3A%, Alp)
RY” A.zlA-ZIZ (Yl2)2AW0
Ry =
Ano(Y212A %A 0

Ryy = (C] - A31AZ; CD)BRo(Y21)2A%A2)
+A21A% (Y12)2Bwo(C) - C2A3hA21)

For the reduced order model to be FWIB, the residual terms Ry
and Ry would have to equal zero and they are clearly not zero,
in general.

As shown for FWIB truncation, the residual terms will

be small if a truly small 6; is eliminated.!2 In this case, the
model resulting from order reduction by one state is nearly

FWIB. Denote m;(jw). n;(jw), and S{(jm) as the variables
corresponding 10 m(jw), n(jw) and 8'(jw), respectively, in Egs.
(47) and (51) for successive order reductions by one siate
without rebalancing, and define p;(jw), q;j(jw), and k;(jw) as

1 R
Pii) = jusi Gw)l1 - (0 + mGe) ™!+ (o + mi ()] (62

-1 .
gi(jw) = jwd;  (o)[{oi + n; o)}t « {0 + nj(jw)) - 1]

kiGw) = { 2+ Ip;G)l) » (2 + IqiGa)y }172

Also denote Ewi(jm) as the weighted frequency response error
for each successive order reduction by one state, or

O[Ewn(jc0)] € kn(j00) [ 1 + ma(je)l « Ioq + naGidl }17 43,

OIEw,(i@)] < ki(j) { I6i + m(jo)l « lo; + n(je)l |12
for i=ng+1 ..,n-1

Now, the frequency response error E, (jw), for the general case
of a reduction from n 10 ng in one step, is related to the errors
Ey,(jw) by
n
Es(o)= 3 Eyw)
izng+1 (64)

Taking the singular value of Eq. (64) and pulling the summation

outside the singular value vields
n

OEw(wll € D GlEwGw)l
izng+1 (65)

Finally, substitution of Eq. (63) into Eq. (65) leads 10 the
approximate error bound for the general case, or!2

kiGe) ( oy + miGoo)i - 1o + ni(jeot 12
i=ng + 1 (66)
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Since the reduced order models obtained by eliminating

one state at a time without rebalancing are nearly FWIB, the Wr e
argument that states corresponding to smaller values of g; also /%8
-~ 60

correspond to the smaller values of lo; + m;(jw)! « Io; + n;(w) is 2

applicable here. Therefore, by eliminating the states 2

corresponding to the smaller values of @, one is also inherently g ©

eliminating the states corresponding to the smaller values of Ig; + é’

m;{jw) « lo; + n,(jw)l, and the weighted frequency response error 0

is approximately bounded according 1o Eq. (66).

Examples lnﬂa 10.2 104 100 10 1
Consider the model given in the Appendix describing the freq. (radss)

stable longitudinal dynamics of a large, flexible aircraft, similar s 10

to that studied in Reference 8. The model is 12 order with L e el

phugoid, short period, and four aeroelastic modes. Control s . //\\,‘

inputs consist of elevator deflection 8g and canard deflection 8¢ 3 AN

while responses of interest are pitch rate q' and vertical § of i

acceleration a,, from sensors located near the cockpit. A !
Suppose an accurate reduced order model is desired in ? § e !

the frequency range above 3 rad/s. A Sl order model is € - ; '

obtained by FWIB truncation (from 12t to 5 order in one step) !

using an input weighting filter with unity magnitude above 3 40— !

rad/s and 40 db/dec atrenuation below 3 rad/s. The frequency 104 101 104 100 101 e

responses of the reduced order and higher order models are freq. (radis)

shown in Figures 4 and 5, indicating the 50 order model Higher Order

acc'ur:reéyfrcﬂecrs the dynamics of the higher order model in the — — — ~ Reduced Order

weighted frequency range as desired. Figure 4. Frequency Rcsponses From FWIB T i
To investigate the assertion that a reduced order model, ¢ a y responses From runcation

obtained by the elimination of a single state corresponding 1o a 10

small g, is nearly FWIB, consider the following from Eq. (40).

P
~
o
(9]

A22(X|2)2+B‘>CW.X7')+(X |2)2Aw|+Bva,Bw, = -Aol( )

Z| Zz 23 Z.; Rxlg
(67)

mag. {fys2/rad db)

Table | contains the average vajues of Z; thru Z4 and Rxlz for
the reduced order models obtained by the truncation of one state

at a time, based solel n the g;'s and without rebalancing, 20 e
, based solely upon the o;'s and out rebalancing 103 102 10-1 100 10t 1®

leading to the 51t order model. Observe that the residual term : : freq. (radh)
Rx,, is small relative to the terms Z; thru Zy, making the 1 id
reduced order model essentially FWIB, qQ/8¢c  fommmmmoees -

Attention is now turned to the assertion that elimination
of a state corresponding to a small 6; inherently eliminates a state
corresponding to a small lo; + m{jw)! + g;. (Note n(jw) =0 for
no output weighting and igl = ¢;.) Table 2 contains the

maximum values of lo; + m(w)l * &; for the reduced order
models obtained by the runcation of one state at a time, based

solely upon the g;'s and without rebalancing, leading to the 51

mag. (rad/siad db)

20 PETEET PRI

order model. Observe that at each step, the state with the LTI T T Y T T TR
smallest ¢, also corresponds to the state with the smallest max freq. (radhs)
. . e Higher Order
Io; + m(jw)l + 0; denoted by the undcrlmc supporting the — — — — " Reduced Order
reduction algorithm based only upon the aj’s. 7 Figure 5. Frequency Responses From FWIB Truncation

Table 1. Ry, Data For FWIB Truncation

R
= 1 10 9 8 7 6 5 Rx,q = an f Rx )]
Rx12 0.000031| 0.016 0.00086 | 0.015 0.13 0.034 0.42 i=1j=
7 3.8 12 47 5.2 5.6 6.1 6.3
7 6.2 6.9 7.6 3.4 9.2 10 12
2 3.9 4.3 4.8 5.3 6.0 7.0 7.8 =RD Z E KZpd
Z 12 13 14 16 17 19 22 Jik=t
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Table 2. ig, + m(jw¥ < ¢, Data For FWTB Truncauon

g 1 10 9 8 7 6 5
max 0, + m(w) o, | 0.0000017
2 | 00078 | 0.0079
3 | 0.0079 0.0079 | Q0078
4 |15 3.5 3.5 a5
s | 49 49 49 49 4
] 6| 180 180 180 180 170 20
"\ 7| 2400 2400 2400 2400 2400 2400 2300
8 | 64000 64000 64000 64000 64000 54000 74000
9 [ 200000 | 200000 | 200000 | 200000 | 200000 [ 240000 | 130000
10| 23000 23000 23000 23000 23000 21000 21000
11| 400000 | 400000 | 400000 | 400000 | 400000 | 410000 | 400000
12| 510000 | 510000 | 510000 | S10000 | 510000 | 510000 | 510000
Y 5!—:80
Now suppose a different reduced order model is required
in the frequency range below 3 rad/s. A Sil order model is g ®
obtained by FWIB residualization (from 121 to 5% order in one g
step) using a weighting filier with unity magnitude below 0.5 3
rad/s and 40 db/dec aunenuation above 0.5 rad/s. The frequency =
responses of the reduced order and higher order models are ¥ 20
shown in Figures 6 and 7, indicating the 5ib order model
ncqu;at:;yfrcﬂccts the dynamécs giéhc higher order model in the
weight uency range as desired.
& Agm, to t)c,s: xhgc assertion that a reduced order model, 102 102 mf‘ ) r_d;: 1o o
obtained by the elimination of a single state corresponding to a 40 i

small o;, is nearly FWIB, consider the following from Eq. (60)
ARIp + 21A§+Bicwi(le)1 +(X12)1CyiBR =
YA Zs

BRCwi(X21)2A35 Az + A12A%(X12)2Ce:BR
CwiBr

(68)

Rxy

AR(X12)1 + BRCwiX2y + (X12)1Ay,; = ARAB(X 1204,

Z3 Zs Zs RX};

where D,,; = 0 for this weighting, and Ag and By are the
reduced order system matrices defined by Eq. (15). Table 3
contains the average values of Z; thru Zg as well as Ry, and

Rx|, for the reduced order models obtained by the

residualization of one siate at a time, based solely upon the 6i's

and without rebalancing, leading 1o the 51 order model.
Observe that the residual terms Ry, and Ry, are small relative

to the terms Z, and Z, and Z3, Z4, and Zg, respectively, making
the reduced order model almost FWIB.
Furthermore, 10 test the assertion that elimination of a

state corresponding to a small o; inherently eliminates a siate
corresponding to a small lo; + m(jw)! « &;, Table 4 contains the

maximum values of I0; + m(jw)l + g; for the reduced order
models obtained by the residualization of one state at a time,

based solely upon the o;'s and without rebalancing, leading to
the 5t order model. Observe that at each step, except for ng =

11 and 5, the state with the smallest ¢; also corresponds to the
state with the smallest max lo; + m(jw)i » G; denoted by the
underline, supporting the cruc:siduallizalion algorithm based only
upon the 6;'s. (The values of mg)x lg; + m(w)l * ; fori =11
and 12 and ng = 11 are nearly in the correct sequence.) Finally,
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Table 3. Ry;; And Ry, Data For FWIB Residualization -
- 7 : Ry = = Y R ]
X1 = Xi1)
R 1 10 9 8 7 6 5 i ey K
Rx1; 0.0032 0.000290 | 0.042 0.0084 0.81 0.010 30 "R p
7 78 87 280 10 920 130 2700 T\’x|2=n—R13‘ T Ry
Z; 78 87 230 110 920 130 2700 nR W‘("”‘
Rx13 0.0012 0.0000016] 0.011 0.00010 | 0.040 0.00035 | 0.92 Z-L 3 3z for i=12
Z; |86 8.4 24 8.3 51 8.4 150 nd =1kt
Zs 8.5 8.4 24 3.2 st 8.3 150 _ m P
Zs 0.22 0.24 0.27 0.30 0.34 0.39 n.41 ZiTR%_ZI kZl 1@yt for i=345
)S =

Table 4.1g; + m(jw)i - o; And ! p,(jw)l Data For FWIB Residualizaiion

nR 1 10 9 L] 7 6 b
max g, + m(jw)i - 0; 12 [ 0.0000035
¢ 1| 0.0000027| 0.000025
1000033 | 00033 | Q003
9 (013 0.13 0.13 014
8 115 1.5 1.5 15 L3
] TS 55 55 55 55 9
"\ 6 |90 930 930 930 930 930 920
5 1120 120 120 120 120 120 120
4 | 4200 4200 4200 4200 4200 4200 4200
3 13100000 | 3100000 | 3100000 | 3100000 | 3100000 | 3100000 | 3100000
- 21 230000 230000 230000 230000 230000 230000 230000
1| 62000 62000 62000 62000 62000 62000 62000
max ( Ipag » 10} ] | 2.0 1.4 20 1.8 1.2 1.7 20

Table 4 also contains the peak values of p;(jw), which appear in

the frequency dependent factors multiplying the o; terms in Eq.
(66). Note the peak values are approximately 2 or less, as
predicted.

It is important to realize that in the above two examples,
the regions of interest consist of the high and low frequency
ranges, implying that in each case, the states to be eliminated
should be either truncated or residualized, respectively.8 In fact,
for the first example, a 51 order model obtained from FWIB
residualization does a poor job of matching the dynamics of the
higher order model in the weighted frequency range, while in the
second example, a 5t order model obtained from FWIB
truncarion does a poor job of matching the dynamics of the
higher order model in the weighted frequency range.

To demonstrate that FWIB truncation and residualization
may be used in coordinated manner to achieve higher accuracy
than that attainable from either technique used alone, suppose an
accurate reduced order model is desired in the 1 to 10 rad/s
frequency range. An input weighting filter with unity magnitude
in the | to 10 rad/s frequency range and 40 db/dec atenuation
otherwise is used. One 41k order model is obtained by FWIB
truncation.  Another 4il order mode! is obtained by a
combination of FWIB truncation and residualization. In this

technique with the o;'s ordered from smallest to largest as in Eq.
(11), the states x; and xg are truncated and states X, X3, X4, Xs,
X7, and xg are residualized. By performing a modal analysis on
the FWIB model, or by eliminating one state at a time and
observing which mode is essentially eliminated, it can be found
that states x| and x¢ are associated with a low frequency
(phugoid) mode while states x5, X3, X4, X5, X7, and xg are
associated with modes at high frequency relative to the
frequency range of interest. The frequency responses of the
reduced order and higher order models are shown in Figures 8
and 9.

As seen in Figures 8 and 9, both 41k order models
accurately reflect the dynamics of the higher order model in the
weighted frequency range as desired. However, note in the

q/8g and q/8¢ frequency responses that the reduced order
model from FWIB truncation/residualization has improved
accuracy in the 0.1 1w | rad/s frequency range relative to the
reduced order model from FWIB truncation. Note this is

achieved at the expense of less accuracy in the q/8g frequency
response around 40 to 100 rad/s. These results demonstrate that
even with FWIB truncation and residualization, the user should
still be aware of the classical order reduction knowledge that
truncation is most appropriate for eliminating lower frequency
dynamics while residualization is most appropriate for

eliminating higher frequency dynamics.8

Conclusions

The real importance of a frequency response error
analysis is not for an a priori assessment of the numerical
reduction accuracy, but rather in gaining insight, offering
guidance, and giving justification for the technique. The FWIB
truncation error analysis presented here gives support for the
truncation of coordinates based solely upon the weighted

controilability-observability measures, and explains how these
measures contribute to an upper bound on the frequency
response error. FWIB residualization has been shown to be an
equally valid order reduction technique possessing frequency
response error properties similar to that for FWIB truncation.
Finally, FWIB truncation and residualization can be used in a
coordinated manner, consistent with classical truncation and
residualization, to obtain higher accuracy than that achievable

from either technique used alone.
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Appendix
The aircraft model is

X = Ax + Bu (69)
y=Cx+Du

where

iq (rad/s)] u-{BE (md)]
2, (fUs2) 8¢ (rad) 70)
A AIZ]
A=
A1 A
[ -1.451e-2 1.935¢+1 -3.220e+1 -1.907¢+0 0 0
.1.487¢c-4  -4.285e-1 i} 1.025¢+0  -4.223¢-3 -1.445¢-4
Al = ] 0 0 1.c+0 0 0
1.105¢-4  -3.430c+0 0 -8.335¢.1 -6.625¢-2 -3.814c-3
0 0 0 4] 0 1.e+0
L 4.227¢-1  -1.072¢+3 [} -7.935¢+! -3.536e+] -6.028e-}
i 0 0 0 o ¢ 0
4.487¢.27  1.755¢-3  2.170e-3  1.036¢-4  -2.053e-3 -1.391e.5

Atz 0 0 0 0 0 0

-5.160c-2 2.950c-2 B.544¢-2 4.126e-3 .3.777¢c-2 -1.190¢-3
0 0 0 0 0 0
L -6.475¢+0 -1.647e-] 2.554e+! 5.435¢-1 B.633e+0 -1.17le-1




! rooo 0 0 o 0 0
{ 2.773e-2  3.552¢+! 0 1.858e-1  5.801e+0 1.395e-t
; U 0 0 0 0 0
[ -6.653¢-2 1.475¢+2 0 4.567¢+0  2.880c+0 -7.236e-2
0 0 0 0 0 0
; L 3.078¢.5 1.014e-2 0 9.965¢-5  6.696c-3  -1.954e-4 J
; M 0 l.e+0 0 0 0 0 7
1 -1.766c+2 -5.054c+0 2.714c+0 6.710e-2 4.643¢+0 6.646e-2
Ag= 0 0 0 e+ 0 0
1.425e+1  2.243e+0 -1.156e+2 -4.246e-1 1.425¢+0 .1.507¢-!
0 0 0 0 0 lLe+d
L -3.999e-2 1.440e-3 2.933e.3 .1.641c-4 -1.211e+2 -7.226e-1 J
[ 1.477esl 0 7 f' 0 1.501e2 7T
-6.384¢-2 -1.2d8e.2 0 +3.330e+2
0 0 0 0
-5.321e+0 8.392e-1 l.e+0 5.034e+t
0 0 0 -6.585¢+0
Ba| 9.230e+2 -6211e+2 c=| -2100e-2 2.019e-2
0 0 ] -1.190c+t
-8.841e+! -1.107e+1 -2.300e-2 .1.954e+0
0 0 0 -5.232¢+0
2.529¢+2  -4.571c+l -3.200¢.2  -7.069¢-2
0 0 0 -2.894¢+0
L 4.445¢-2 .1.521e+0 J L -3.400e-2 -1.672¢-2

D=[ 0 0 ]
5.20le+l  .2.445e+2
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Whether the engineer is developing a system model for dynamic analysis, control law
synthesis, or simulation, a simple low-order model with the requisite validity is desirable for a
variety of practice reasons. The question arises, therefore, as to how to obtain such a simple yet
valid model. Even more fundamental is the question of what model characteristic are important
such that one may strive to retain them. Although the initial question has been addressed for some
time, from the attention still paid to model and controller order reduction (c.f. Refs. 1,2), it appears
that the issues still remain unresolved.

In Refs 3-6, some previous offerings on the subject are presented. In this paper,
discussion will continue, in the attempt to expand on some of the earlier results, to further clarify
the theoretical basis behind the proposed methodology, and to reveal some important aspects of not
only model-simplification, but also control-law synthesis for elastic vehicles.

1. Criteria for Modeling

The objective in model simplification, as with all system modeling, is to develop a
fundamental understanding of the system in question. For the model to be useful, it should predict
to the required engineering accuracy the behavior of the actual system. Note that it does not have
to predict with perfect accuracy, and that is not possible anyway. The required accuracy depends
on the application for which the model is intended.

In this paper, as in Refs. 3 - 6, the intended application of the model is to predict the
behavior of the system when it is subject to feedback action, as shown, for example, in Fig. 1.
Clearly, then, the critical characteristics of the actual system that must be adequately captured by
the model are those characteristics important in a feedback system. (Note that the feedback action
could represent an automatic control system, as well as that of a human, or manual controller.)
Finally, the existence of a sufficiently valid, although perhaps complex model for the system is
assumed to be available - admittedly a big assumption. Further, if this model is infinite-
dimensional and/or non-linear, it is assumed that a locally linearized, finite-dimensional model may
be obtained. The original (complex) model will be denoted as G, while the linear model will be
denoted as G.

As a result of any simplification process, differences between the more-accurate model and
the simple model arise. Or conceptually, if Gy is a simpler model for G, the model-simplification
error may be considered to be AG = G - Gg. These errors are key to the research presented here.

In contrast, model-simplification errors arising due to the development of G, or AG =G - G, will
be considered only indirectly.

The critical question then is what errors AG are critical, or should be minimized, and what
procedure will do so? The answer to the first part of the question could be that AG's critical in a

feedback loop should be minimized. Further, if these AG's are interpreted more generally as
model uncertainty rather that model-reduction error, the recent research on multi-variable
robustness theory may be bought to bear on the model-simplification problem. This is the main
idea in this research.



2. Robustness and Model Reduction

In this section, some key results from robust control theory will be noted, and they will be
interpreted in the context of the model reduction problem.

With reference to the system shown in Fig. 2, Gy is the transfer-function-matrix
representation of this simplified model, AG(s) in the analogous representation of the model-

simplification error, and the full-order linear model is G = Gg + AG. Likewise, K(s) is the matrix
of control compensators, perhaps to be designed using Gg. Clearly in this context, one desires
that the K(s) so obtained will control the "true" G(s) as predicted through the use of Gg. Attention

is now turned to exposing the critical AG's via multi-variable Nyquist theory.[7]

Let ®(s) be an analytic function of the complex variable s, and let the number of zeros of

®(s) in the open right half of the complex plane be denoted as z. Then the Principle of the
Argument states that

R 360 (0, ¥(s), Dy) = z

or the number (N) of clockwise encirclements of the origin made by the image of the contour Dg,

under the mapping of ®(s), as s travels clockwise around Dy , equals z. Here Dy, is the "Nyquist
D contour” that encloses the entire right-half of the complex plane. Clearly, with regards to

stability, the ®(s) of interest is the closed-loop characteristic polynomial of the feedback system,
denoted by @ (s).

Now, as shown in Ref. 8, and elsewhere, and referring to Fig. 1, for example,

D (5) = Py (s) det [T + GK]
= Qg (s) det [I + KG] (O

where @ (s) is the characteristic polynomial of the open-loop system KG(s) or GK(s). That is, if
either the transfer function matrix GK(s) or KG(s) has the state-space realization

).( = AGKX+ BGKC
y = Cgkx

then @ (s) = det[sI - Agk], and the zeros of @ (s) are the open-loop poles of the system. Note
that Eqn. 1 may therefore be re-written as

Dq (s) = det[sI - Agg] det [T + Cgk [sI - Agkl! Bkl

Now if the number of right-half-plane zeros of @ (s) is p, then the number of right-half-
plane zeros of det [T + Cgg [sI - Aggl-! Bgg] must be z-p. Furthermore, from the Principle of the
Argument



N
R-o0 (O, det [I + CGK (sl - AGK)-I BGK] ,DR) =Z-p
Consequently, if p is known, z may be deduced from

z=p+(z-p)
=p + [g Moo (O, det [T + Cgg (I - Agg)! Bak] .Dp)]

or closed-loop stability is determined from knowledge of p and the examination of the Nyquist
contour for det[I + GK] or det [I + KG]. Therefore, the closed-loop system is stable if and only if
the Nyquist contour for det[I + GK]}(= det[I +KG]) encircles the origin counterclockwise exactly p
times.

Of course the determination of z is possible from other means, and the real utility of the
above fact is in defining the concept of relative stability, and in identifying factors that are critical to
closed-loop system stability. These issues are of special import here.

Consider the model error, or uncertainty, to be AG (as in Fig. 2), and assume that K is
such that KGg leads to a stable closed-loop system with good stability margins. (Note this
assumption should always be true as it involves a key objective in determining K(s) using Gy to
begin with.) Then if (assumption 1) the number of right-half-plane poles of KG (= p) is identical
to the number of right-half-plane poles of KGg ( =pr), K will stabilize G if and only if
(assumption 2)

2o (0, det [T+ GK], Dg) = p oo (O, det [T + GgKJ, Dg)

or the number of encirclements of the origin made by the Nyquist contours associated with G and
with Gy, are identical.

Stability is guaranteed as follows:
Let z = no. of unstable closed-loop poles of the KG loop.
zg = no. of unstable closed-loop poles of the KGg loop
P, Pr - defined above

Then to show stability (or z = 0), note that if (assumption 1) pg = p, then

Z=ZR-(ZR-pR)+(Z'p)

By the assumption KGpg leads to a stable system, zg = 0, and from assumption 2, (zg - pR) = (z-
p). Hence, z=0.

This now establishes in a meaningful way, qualitative criteria for model simplification, the

simplification must at least lead to AG's such that assumption 1 and 2 are satisfied. But the criteria
goes further. Not only must stability of the KG loop be assured (i.e., z = 0) but the margins
"designed" into KGpg should carry over to the closed-loop system associated with KG. Otherwise,
the K so designed would not be satisfactory. It is for this reason that any model reduction
technique that just assures stability of the full-order closed-loop system may not be good enough!

To satisfy assumption 2, or to assure that the number of encirclements of the origin is
unchanged due to AG, requires that (]



det [I+GrRK +eAGK]#0 v >0, €€ [0,1] 2)

In other words, if as the Nyquist contour for det[I + GgK] is continually warped to that for det [T +
GK] the origin is never intersected, the number of encirclements of the origin cannot change.
Furthermore, Eqn. 2 is assured if (c.f., Ref. 9)

0 (AGK) <O [ I+ GgK] v >0 3)
Finally, it is known that an alternative to Eqn. 3 is
6 (E,) <O [I+(GgK)1] =9 {[GRK (I + GgK)1]-1} v >0 4)

where E;, = Gx1AG

The above expressions (Eqns. 2 - 4) may be extended by breaking the frequency domain

(0 £ ® < 00) into the domains (0 < ® < W*) and (W* < ® < o0). Note that these domains are non-
intersecting. Now it can be argued that Eqn. 2 will be satisfied if

det [T+ GgK +eAGK] 20 O<w<w* (5)
0<e<))
and
det [T+ GgK +eAGK] %0 (0* < 0 < 00) (6)
(0<e<l)

Further, Eqn. 5 is assured if Eqn. 3 is satisfied for ® < o*, while satisfying Eqn. 4 for © > w*
assures that Eqn. 6 is satisfied. Hence, in such a situation, Eqn. 2 is satisfied.

By Eqns. 3 and 4, quantitative criteria on critical AG's are established. Further, the overall
strategy for model simplification becomes apparent, and the interaction between model
simplification and control law synthesis is underscored. Regarding the later, it should be clear that

the allowable AG's (those that do not destroy closed-loop stability of the full-order system
controlled by K(s)) depend on K itself. In other words, designing a "good" K(s) increases that

allowable AG, while designing a bad one may put very strict limitations on the allowable AG, and
hence model accuracy. The former K(s) is robust, the latter is not. '

Regarding the model simplification strategy, then, first observe the right side of Eqn. 3.
When 0 (GgK) >>1, O [I + GgK] = 0 (GgK). Conversely, when 6(GgK)<<1, O [I + GgK] = 1.
Finally, the O [T + GgK} will take on its minimum value in the frequency range where o; (GRgK) =

1. The frequency range where the latter occurs is of course the (multi-variable) gain crossover
region. Consequently, it is this frequency range where the AG must be the smallest, and this can

be assured if each element of the AG matrix is small in this frequency range.



Also, noting the above discussion, Eqn. 3 may be satisfied by rather large AG in any

frequency range where O [I + GgK] is large, and this will occur when O (GgK) is large. If K is

designed to give a good classical Bode loop shape, O (G.K) will be large for frequencies below
crossover.[9

Now consider Eqn. 4. When & (GgK) <<I1, 0 (GgK)1>>1, and  {I + (GgK)'1]= O
(GgrK)1>>1. Hence the allowable AG may also be rather large in this case. Further, if K yields a
good loop shape, or is well attenuated, at high frequencies, O (GRK) will be small for frequencies

above crossover. So clearly, the AG must be smallest in the region of multi-variable crossover,

while if K yields a good bode loop shape, rather large AG elsewhere may be acceptable and Egns.
3 and 4 may be satisfied. The above discussion is summarized in Fig. 3.

The final issue to be addressed is that of satisfying assumption 1, or the number of unstable
poles of KGg must be identical to the number of unstable poles of KG. First note that this is
equivalent to requiring the number of unstable poles of G and Gy to be the same, since only one K

is involved. Then observe that the poles of G are the poles of Gg + AG, which consists of the
poles of Gy plus the poles of AG. Hence to satisfy assumption 1, AG must be stable.

Attention will now turn to some additional criteria arising from performance considerations
rather that from stability robustness. The system to be considered is that shown in Fig. 4. The
vector of responses Y(s) is given by

Y =1+ (G; + AG; )KI'1 (G, + AGDK(Y - N)
+ [I+ (G, + AG)K]!1 (G, + AG,) D

Here G, is the reduced-order model for the response of G to control inputs, where Gy is the

reduced-order model for the response of G to disturbances being considered. AG, and AG, are the
analogous model-simplification errors.

The first observation to be made is that stability and stability robustness depends on G; and
AG,, not on G, and AG, Note that the poles of (G, + AG,) are the poles of the "true” plant G, as
are the poles of G, + AG,. Hence if K stabilizes G, which will be assured if G; and AG, satisfy

the criteria developed previously, K must therefore stabilize (G, +AG,). This is significant since

some (stable) poles of G may be approximately cancelled by some zeroes for the transfer functions
governing responses to control inputs, but not cancelled in those governing responses to
disturbances. Cancelling these poles to obtain G, has raised questions by some as to whether
those poles so cancelled could lead to problems later in analysis. The answer appears to be that
they will not if G, is obtained such that those poles are retained. But from the above discussion on

stability, the only reason to keep these poles in G, (that by assumption are not approximately
~ cancelled) is such that the disturbance-rejection performance predicted using G, (when designing

K, for example) will be reasonably accurate.




Finally, noting that the disturbance response due to AG, is
YD2 =[I+ (Gl + ACYDI(]'1 AG2 D

for good performance prediction (Y Dy small), AG, should tend to be small whenever D is large and

(G, + AG)K is small. But here again, if K is designed to obtain a "good loop," it will be
designed such that G,K (and by implication (G; + AG;) K) will be large over the frequency range
where D is large. Consequently, this should not pose stringent requirements on AG,.

In ending this section, it is worth noting that assuming K is designed properly has been
critical. By doing so, one takes advantage of one of the basic advantages of a good feedback
system, reduction in sensitivity to plant (or plant model) variations. This allows the development
of a modeling procedure that focuses on the really critical problem of obtaining a good model in the
crossover region.

3. Methodology and Sample Results

The procedure offered was discussed in detail in Ref. 5, and the computational technique is
summarized again in Table 1. The technique is a frequency weighted internally-balanced approach,
with stable factorization in the case of an unstable plant G. The stable factorization procedure sets
the unstable subsystem of G aside via partial fraction expansion, leaving the remaining subsystem
G stable. This stable subsystem is then reduced, such that a stable reduced order model Gg, is
guaranteed. The unstable subsystem is then rejoined with Gg, to obtain the final reduced-order
model Gg. By this procedure, the number of unstable poles of G are preserved. In fact the
unstable poles in G are exactly retained in Gp .

The internally balanced technique (19 requires the frequency-weighting extensionl] since

the basic technique leads to small model-simplification errors AG where the elements of G have
large magnitude, which is not necessarily the crossover region. Further, a very poor model may
be obtained where the elements of G have small magnitude. As will be shown later, this can be
totally unacceptable.

In Ref. 11, a frequency-weighted approach was also suggested, but the weighting required
the knowledge of the compensator K, obtained using the full-order plant. Since designing a simple
K using the simpler plant Gy, is the typical design objective, the above weighting is undesirable. In
Ref. 5, it was noted that simply adding a weighting filter obtainable by inspection of the Bode plots
of G and knowledge of the desired crossover frequency range let to excellent results. This filter is
easily discarded after Gy is retained. In the example presented later, it will be shown that this
approach again appears quite acceptable.

The key to the concept is the knowledge of the fact that the internally balanced approach

yields a small AG where the elements of G have large magnitude. Heuristically, if a filter W(s) is
used such that W(s)G(s) has large magnitude in the required frequency range, and if WG reduced
such that WGg, is obtained, then Gy will have the desired properties.

As the example, consider an elastic aircraft identical to the configuration investigated in
Refs. 3 and 6. This configuration is of reasonably conventional geometry with a low-aspect ratio
swept wing, conventional tail, and canard. A numerical model for the longitudinal dynamics is



Table ].Freguency Weighted Internallv Balanced Reducnon

Given: System state space descripton A, B, C and weighting filter state space

description Ay, By, Co-
Find: ™ order system

Step 1:  Solve for X and Y
A BC,) [X Xp| [X Xp| [ AT 0 0 0
0 Au] [Xa Xn T | Xq1 Xag| | CIBT ATl 7|0 B,BY =0
AT o] [Y Yu| [¥Y Yi[ABG jccTo
cIsT ATl [Ya Y Yy Yo |0 A *l o o°

Step?2: Find Tand T where XY = T2, T = [T, Toerds T = [Ur, Uns]

- |

0
2= 0 2 where
“I-r
I, =diag(veyv,) 1=1liaT

I, = diag(veVe) j=r+l, *--, 0

Ve Vo, 2 1T 2V Vo, 2 0

Step3: 1 order systemis
A =UJAT,
B,=U;B
G =CL



available from the above references. Both rigid-body modes and four elastic modes (resulting in a

11th order model) are included. The in-vacuo vibration frequencies are 6.3, 7.0, 10.6, and 11.0
rad/s, and are representative for a supersonic/hypersonic cruise vehicle. These frequencies,
furthermore, are all near the anticipated frequencies at crossover for the control systems to be
designed.

Control inputs are elevator deflection dg and canard deflection dc, while the disturbance is

the perturbation in angle of attack due to atmospheric turbulence ag. Selected responses are
vertical acceleration a;' measured at the cockpit and pitch rate q measured at the antinode of the first

bending mode. Therefore, the flight and structural mode control loops in the context of Figure 4,
might correspond to the following, for example

Y =[a; q)T
U = [8g 3¢IT

Obtaining the reduced order model G, was the subject of Ref. 6. An anticipated crossover
frequency range (for G,K) was assumed as 1 to 10 rad/s. In that reference, it was also noted that a
fourth-order for G; was sought based on the observation that the full order model has two
oscillatory models in this frequency range.

Attention is now turned to the requirements for G,. As a realistic example, the Dryden gust
spectrum for turbulence is used to describe the disturbance. A fourth-order model for G, is sought
based on the observation that the full order model has two oscillatory models in the frequency
range where the spectrum of D is largest. This frequency range is coincidentally also 1 to 10 rad/s.

The reduced order models for G, and G, were then obtained simultaneously from the
frequency-weighted internally-balanced reduction technique’ which was specifically developed to
meet the criteria in Section 3. The frequency-weighting filter used was a band pass filter of unity
magnitude in the 1 to 10 rad/s frequency range with 40 db/dec roll off on either side of this
frequency range.

Table 2 contains the reduced order state space matrices A, B, C and D. Figures 5 through
10 show the reduced order and full order frequency response magnitudes for G, and G,. Observe
that the reduced order model accuracy approximates the full order model in the 1 to 10 rad/s
frequency range as desired. To complete this example, a simple control law, consisting of three
constant gains was synthesized using the model G,. The synthesis objective was to augment the
damping of the first aeroelastic mode with acceleration feedback to the canard, to augment the short
period damping with pitch-rate feedback to the elevator, and to provide some response decoupling
with a cross feed from the elevator to the canard. The resulting control law is of the following

form

6C = Kl K2K3 az' + 1 K2 8Ccom

8E 0 K3 q 0 1 8Ecom
Actuation effects were modeled with simple first-order lags, with corner frequencies at 20 1/s for
both the canard and the elevator.



Table2 R d Order Model

AIB-_—
CIiD

-9932 8294 -0138 -0507 |-31.67 14.48 '13.59
-2.013  -.0137 0121 0329 3592 -21.42 1-2438
-5.593  -6638  -3175  -9.658 |[-593.7 -420.0 1 700.1
4934 2098 3739 -J5171 |-2814 -175.2 | 3425
0665 -.03471 .0017  .0015 I 0 0 i 0

8.762 7218 9287  -2.038 | 52.01 -244.5: 333.0

y=|q @/s) u =0 (rad) D= og (rad)
az' (ft/s) d¢c (rad)

Shown in Fig. 11 is the plot of Eqn. 3, while Eqn. 4 is shown in Fig. 12. Note that
although this control law did not result in high gain (large G, K) at low frequencies, Eqn. 3 was
still satisfied below crossover region. Conversely, Eqn. 4 is satisfied, although barely, in the

frequency range above crossover. Hence, from the argument in Section 2, if @w* in Eqns. 5 and 6
is in the crossover region, stability is assured. For reference, the pitch-rate to elevator transfer
function is

q(s) _ 50 (0.33)[.13,4.84][.01,10.6][.03,11.0][.21,13.](45.)

SEC(S) [.53,1.81][.15,4.78][.02,10.8]{.03,11.]{.19,13.3](19.)(69.)

4, An Additional Criteria

As noted in Section 3, the AG arising from the model simplification must satisfy stringent
criteria in the crossover region, and if Eqn. 3 and/or 4 (or 5 and 6) is satisfied, closed-loop stability

is assured. To be discussed here is the fact that the controller K should not be such that small AG
is amplified such that 6 (AGK) becomes large. It will be shown by example that this can easily

occur where the magnitudes of G (or of the gij's) are small. Hence, the example will demonstrate

why obtaining a good model in this situation is important (recall that unweighted balanced
reduction has a problem here), and some implications regarding control-law synthesis will also
arise.

Consider the simple scalar plant

gs)= (s2+.04s+1.2)
s(s? + .032s + 0.82)

The plant is stable and minimum phase, so a robust control law should be obtainable. Using
LQG/LTR or H,, for example, the following compensator could be obtained.

10



k(s) = 8(s2 +.032s + 0.82)
(s2 +.04s + 1.2) (s + 8)

It can be easily verified that the loop shape kg is very good, yielding infinite gain margin, 90
degree phase margin, and good roll off above 8 rad/s.

Now assume that the "true" plant is

Etrue = 0,69 (5% +.048s + 1.22)
s(s +.032s + 0.82)

or the numerator "frequency” is in error by 20% (1.0 — 1.2). Note that this could occur, for
example, if a vibration mode shape was slightly off in the modeling. Shown in Fig. 13 is the plot

of Eqn. 3 for this example, and clearly & (Agk) > 0 (1 + gk) at 1 r/s (the designed crossover
frequency). Further, a quick check would show the kgr;e l0op to be unstable. But the [Agl =g -
gtruel (not shown) would be found to be rather modest at w = 1r/s, with much larger IAg! at lower
frequencies. The problem could be interpreted as one of the control law k amplifying the |Agl at ®
=1 r/s, and this is confirmed from the plot of Ik(jw)! in Fig. 14.

Stability of the kgy;e loop would result, and Eqn. 3 satisfied, if the Ik(jw)l at @ = 1 rad/sec
were simply reduced. This is accomplished with the following compensator

Kmod(s) = 8(s2 + .032s + 0.82)
(s2+12s+1.2) (s + 8)

or the damping of the complex compensator poles is increased, and the plant model zeroes close to
the imaginary axis are not exactly cancelled. Clearly the loop shape with this compensator is not as

"optimal" as the original, but this control law is more robust against this Ag.

Noting that the problem arose with a modeling error that is associated with lightly-damped

zeroes, the critical Ag was at a frequency (® = 1 1/s), where Ig(jw)! was relatively small as shown
in Fig. 15. Hence, obtaining a good model at this frequency is important. Furthermore, by
attempting to cancel those lightly-damped zeroes in the plant, the original controller was very
sensitive to their location. Increasing the damping of the compensator poles, as in a classical notch
filter, made the loop more robust against the uncertainty in the location of these plant zeroes.
(Incidentally, this can be accomplished with a modified LTR procedure, as noted in Ref. 12 and in
another paper in preparation.)

As a final remark, it is observed that lightly-damped zeroes in the compensator are different
from similar zeroes in the plant since through the design and implementation of the compensator,
the location of its zeroes may be more accurately defined.

5. Conclusions

Quantitative criteria are presented for model (or controller) simplification. The reduced
order model (or controller) must well approximate the full-order system in the (multivariable)
crossover region for stability, and stability robustness, to be assured. Bounds on the model-
simplification error were noted, and if the bounds are satisfied, stability is assured. It was also

11



noted that the model reduction criteria were functions of the control law, and by synthesizing a
robust control law, the criteria could be easier to satisfy.

A numerical procedure, consisting of stable factorization with weighted balancing of
coordinates has been shown, by example, to meet the above criteria. The example involved
reducing an eleventh order linear model of an elastic aircraft to obtain a fourth-order model leading
to the desired six transfer functions.

Finally, another example demonstrated the importance of obtaining good agreement
between the full- and reduced-order model in the crossover region, even where the transfer
function (or functions) have relatively small magnitude. Furthermore, the example demonstrated
that an apparently robust controller could in fact amplify small errors, and lead to unstable results.
The problem would occur with any control law that had the effect of cancelling lightly-damped
transmission zeroes of the plant model.
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Abstract
The vehicle to be augmented is representative of a
large supersonic transport, with first fuselage

aeroelastic mode frequency at six rad/sec, very close to
the two rad/sec shori-period mode. An integrated
flight- and aeroelastic-mode control law is synthesized
using a previously developed model-following
synthesis approach. This technique, designed to yicld a
desired closed-loop rather than an open-loop loop
shape, involves a specific LQR formulation leading to
the model-following state-feedback gains. Then the use
of asymptotic loop transfer recovery is utilized to
obtain the compensation that recovers the LQR
robustness properties, and which leads to an output-
feedback control law. A classically designed control law
is also developed for comparison purposes. The
resulting closed-loop systems are then evaluated in
terms of their performance and multivariable stability
robustness, measured in terms of the appropriate
singular values. This evaluation includes the use of
approximate literal expressions for those singular
values, expressed in terms of literal expressions for the
poles and zeros in the vehicle transfer-function matrix.
1t is found that the control laws possess roughly
eguivalent performance and stability robustness, and
the characteristecs limiting this robustness are traced to
some specific loop gains and the frequency and
damping of the open-loop aeroelastic mode dipole.
Furthermore, closed-form literal expressions for these
characteristics are presented in terms of the stability
derivatives of the vehicle. Insight from such an
analysis would be hard to obtain from a strictly
numerical proceedure.

1. Introduction

The supersonic and hypersonic capabilities of
advanced aerospace vehicles and the use of extremely
light metalic or composite materials in them can lead
to vehicles with significant dynamic coupling between
the rigid-body and elastic motions. Ref. 1 and 2, for
example, specifically addressed this coupling at the

" Professor of Engincenng: Assoc. Fcliow AJAA

" Research Associate; also Docioral Candidaie, School of Aero and Astro,
Purdue Univ.; Swdent Member AJAA
Copyright © 1990 by the American Institute of
Aeronautics and Astronautics, Inc. All rights
reserved.

carliest stage of system modeling and flight-control
synthesisin.

Augmentation of an aeroelastic vehicle's open-
loop dynamics via feedback is often necessary to
provide sufficient levels of stability and performance
(e.g., handling qualities). Feedback is used to stabilize
the attitude and or aeroelastic responses (such as static
aerodynamic instability or flutter) or just augment
damping. Crossfeeds may also be used to improve the
dynamic responses. And the control-law must ensure
this stability and performance in the presence of
vehicle modeling errors (i.e., robustness). For
acroclastic vehicle applications, modcling errors can
arisc from uncertainty in the acrodvnamic model and
neglected high-frequency structural modes both
leading to uncertainty in the pole/zero locations in the
vehicle transfer functions, for example.Such control
objectives have been noted in the literature™.

{71f possible, the vehicle model (used in control
svnthesis) should aid in the understanding and thereby
provide insight regarding the vehicle physics, exposing
key dynamic characteristics and their causes. This can
be achieved by developing literal expressions for the
vehicle transfer functions (gains, zeros, and poles) in
terms of vehicle model parameters, such as stability
and contro! derivatives or vibrational characteristics,
which have their genesis in the fundamental vehicle
geometric shape and structural layout.2%.10 Models of
this type can be an extremely powerful tool in open-
loop or closed-loop design.!?

The control svnthesis for an aeroelastic vehicle,
and the systems’ analyses specifically using a literal
model, is the subject of this paper. An aeroelastic
vehicle model is briefly presented and deficiencies in
the vehicle dynamics are noted. Control objectives are
stated and sufficient conditions ensuring an acceptable
design are given. A new approach to implicit model
following (IMF) control synthesis!2.13 is briefly
discussed and applied to the vehicle model. A classical
control synthesis approach is also considered for the
purposes of comparison. The resulting compensators
and closed-loop systems are analyzed with a literal
mode] to expose sources of system characteristics that
limit the closed-loop system stability robustness. It will
be shown, for example, that major among these
critical characteristics are the frequency and damping of
the vehicles first aeroelastic mode dipole, and closed-
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form expressions for these terms are presented in
terms of the vehicle stability derivatives.

2. The Vehicle Model For Feedback Synthesis

The configuration to be considered (from Refs. 2
and 10) is a large supersonic aircraft of reasonably
conventional geometry with a low-aspect ratio swept
wing, conventional tail, and canard. Controlled inputs

consist of elevator 8¢ and canard (located near the

cockpit) deflection 8¢ . The reference flight condition is
level flight at Mach 0.6 and altitude 5,000 ft.

The complete non-linear modelling of this
vehicle was the subject of Ref. 2, and the development
of low order linear models for control synthesis was
considered in Ref. 10. A fourth order state space
realization and the corresponding transfer functions
for this linear model are given in Tables 1 and 2. This
model involves the small perturbation longitudinal
dynamics of the effective short period and first
aeroelastic modes. The responses of interest are the
rigid-body angle of attack «, rigid-body pitch rate q, and
pitch rate q' measured at the cockpit. Here, rigid-body
o and q are the angle of attack and pitch rate associated
with the vehicle mear axes. An approximate
measurement of q can be obtained from a rate gyro
located at the anti-node of the first elastic structural
mode, and then lowpass filtering of the higher-
frequency modes. The effects of such filtering will not
be specifically addressed, but it would add additional
phase loss in the loops, which is considered in the
robustness analysis

Table 1. Elastic Aircraft Model
K1) = Ax{t) + Bu(t)
y(t) = Cx({t)
a (rad) 8g (rad)
y=|q{rad/s) | , u=
q (rad/s) 3¢ (rad)
-0.517 3.85 0.150 4.24
-9.39 -0.318 -0.523 -4.67 —l

A=) 00438 00164 -0.0128 -2.06J
-0.0591 -0.0165 0.764 -0.986

-292. -182.
-598. -424.

B ’\_ 53.7 -31.2J
384 177
0.000480 -0.0000247 -0.0188 -0.0286

C=| 000147 000170 -0.0264 0.0549
-0.0222 -0.0213 -0.0372 0.0687

1 rcraft Tran

(&

als)/8gls) = -0.036(s - 0.018 £ 4.9)s + 150.)/d(s) rad/rad
q(s)/8g(s) = -53.0(s + 0.36)(s + 0.11 = 4.9)/d(s) rad/s/rad

q'(s)/8g(s) = 15.(s + 0.040)(s - 29)(s + 4.0)/d(s) rad/s/rad

a(s)/8c(s) = 0.0044(s + 1.8 £79.0)(s + 200.)/d(s) rad/rad
q()/8c(s) = 0.80(s = U.33)(s » 1.3= p.1)/d(s) rad/s/rad

q'(s)/8c(s) = 15.(s = 0.056)(s + 0.73 2 j2.9)/d(s) rad/s/rad

A fourth-order model was developed to
accurately approximate the appropriate frequency
responses of a twelfth-order model, in the anticipated
critical frequency range of 1 to 10 rad/s. Figures 1 thru
3 show some of these frequency responses from
elevator input 8¢ . (It is noted that the next significant
unmodeled aeroelastic mode frequency is above 13
rad/sec.) From Table 2 and Figures 1 thru 3, the major
open-loop dynamic deficiency 1s the level of damping
of the short period ancd aeroelastic modes.
Furthermore, the aeroelastic mode contributes
significantly to the vehicle’s dynamic responses.

3. Classical Control Synthesis

A classical design approach consists of sequential
single loop closures, using root loci, and relying upon
knowledge of the physics of the elastic aircraft for
synthesis strategy.

Consider a 2 x 2 system from Table 2 with the
following notation.

q(s) = g11(s)8g(s) + g12(8)8c(s) 1)
q'(s) = g21(s)8g(s) + g22(s)8c(s)

First, the q'/8¢ loop is closed to improve the aeroelastic
mode damping. Recall q' and 8¢ are a co-located sensor
and actuator pair near the cockpit. The control law 8¢
=8¢’ - kp2q' yields

k0812821 Kng2 .
G =811 Tx kpygyy Ok * 8121 T3} PRl @

. gz 8z .
q=1+kugnss+l+kuguac

n, .
The root locus for 1 + kzz—‘i—z , where n;; and d are the

numerator and denominator polynomials,
respectively, of g;, is shown in Figure 4. A gain of ky; =
0.05 rad/rad/s increases the aeroelastic mode damping
by over 60% of the open-loop value.
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Figure 1. als)/3g(s) And als)/3(s) Frequency Responses

An elevator-to-canard crossfeed is now
introduced to reduce aeroelastic mode excitation from
the elevator. Interconnecting "up canard” with "up
elevator® will reduce aeroelastic mode deflections
from the elevator because the fuselage mode shape? is
similar to the fundamental bending mode shape of a
slender beam.

The crossfeed 8¢’ = k¢ O yields

_ 8i* kaa(811822 - 812820) + Ker 812
q - 1+ kngu

¢ 3
This can be simplified with the identity?

gu 81z

det [G] = det[
8z 8z

hd
:l = 8182 - 81280 = Tc O

where y¢ is the transmission zero polynomial
corresponding to the plant in eq. (1).

y(s) = 89(s + 0.081)(s + 0.46) (5)

20—

mag. (rad/s/rad db)

o2 10-1 100
freq. (rad/s)

-;zo \

o= 101 100
freq. (rad/s)

Open-Loop Vehicle
Closed-Loop Classical Design
Closed-Loop IMF Design

Figure 2. q{s}/Bg(s) And q(s)/8(s) Frequency Responses

Substitution of eq. (4) into eq. (3) yields

nyy + kpaWe + Koy Ny
d + kaanaa

q= 3 (6)

It is now evident the crossfeed has the effect of
moving the zeros of the q/8g transfer function (with
the q'/8¢ loop closed) from nyy + kyWg to nyz - The
Ny

nq; + kag¥e
gain of k¢ = -1.5 rad/rad results in almost perfect pole-

zero cancellation for the aeroelastic dipole in the
effective q/dg transfer function.

Finally, the effective q/8g loop is closed to furter
improve the short period damping. The control law &g
=pd-kq,q yields

root locus for 1 + k¢ is shown in Figure 5. A

- P11 + K22(811822 - 812821) * Kef 812)
9= T4 kpgn + k(@ + kal811822 - 812821) + Kt 812)

@

where p is the gain on the pilot input 3. The root locus
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Figure 5. Zero Root Locus For 6g To 8¢ Crossfeed

\
L , My + kopWe + k0,

L YU

101 102 for 1 + kyy d + kpnigg is shown in Figure 6, as
freq. (rad/s) well as the final closed-loop pole locations for a gain of
Open-Loop Vehicle ky1 =-0.05 rad/rad/s.
------ Closed-Loop Classical Design With some block diagram manipulation, the
L Closed-Loop IMF Design closed-loop system can be represented as in Figure 7.

Table 3 contains the effective closed-loop transfer

functions corresponding to the pilot command §,
8 while Figures 1 thru 3 show the corresponding
frequency responses for the augmente- vehicle. Short-

period damping has improved from Csp = 0.36 (see
Table 2) to Csp = 0.54 (a 50% increase), while the first
aeroelastic mode damping has improved from G, =

Figure 3. q'(sV/3g(s) And q'(s)}/5(s) Frequency Responses

G

2 0.073 (see Table 2) to §, = 0.12 (a 64% increase). These
improvements are apparent in the closed-loop

0 frequency responses.
Significant improvement in the rigid-body (a
-2 and g) frequency response shapes is also achieved.
Besides improved short period damping, the
-4 aeroelastic mode pole-zero "saw tooth” located near 6
rad/s in Figures 1 and 2 are virtually eliminated when
% compared to the corresponding open-loop behavior.

This is a result of improved closed-loop pole-zero
cancellations (see Table 3) as desired in the classical
-4 -2 0 2 4 control synthesis. Or the aerocelastic mode has been
rendered undisturbable from pilot input.

x: -0.47%1.2 9: '8226 9 4. IMF Control Synthesis!2.13
-0.44%6.0 . 0.7352. A newly developed technique for the synthesis
. . of flight-control laws will now be outlined. Although
* (kg = 0.05): _’gg::;;é LQR and LTR concepts are used in the formulation of
the algorithm, this approach is fundamentaly different
Figure 4. Root Locus For q'/§c Loop Closure
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Figure 7. Classicaily Designed Closed-Loop System

from LQG/LTR methodology*. LQG/LTR addresses the
problem of obtaining specified open-loop shapes, while
the approach taken here is to synthesize a control law
that yields a desired closed-loop shape.

The system to be controlled is represented as

(1) = Ax(t) + Bu(t) ®
y(8) = Hx(t) o

and the model of the desired dynamics to be followed
is

q (1) = Apxm(t) + Brd(t) 9
Ym(t) = Hpxplt)
5=-100.8

where § represents the input from the pilot. The error
vector '

e(t) = y(t) - ym(t) (10)

is constrained to be governed by stable, homogeneous
dynamics

é(t) = -Ge(t) (11)
where G is to be selected in *he synthesis process. The
model-following control law is obtained by solving the
LQR problem with the following objective function.

] = J; [(e +Ge)TQ(e +Ge) + uTRu] dt (12
If the product HB is square and invertible, and the
same for HyB, , and if G is chosen as G = - HpoARHR
then perfect model following is achieved
asymptotically as R in Eqn. 7 approaches the null
matrix. If this is the case, then the closed-loop poles
approach the model poles (for G as defined above) and
any open-loop plant finite transmission zeros {(or their
stable miror image).1?
The solution to this problem iss the first step of the
control law synthesis, yielding the state-feedback
contral law

u = Kx + Kgb (13)

For the elastic aircraft model in Table 1, rigid-

body angle of attack and pitch rate « and g, are the
responses sclected tor modei follc: ing, so that the
handling characteristics will be improved. Also it is
desirable that the response approximale that of a rigid
vehicle. With this selection, the open-loop plant
transmission zeros are located at -23. 1/s and 35.1/s,
and HB is square and invertible.

The model of the desired dynamics is chosen to
be

Table 3. Closed-Loop Transfer Functions

nthesis

Classical Control
als)/8(s) = 3.7(s + 0.70 £ j5.9)(s + 160)/d(s) rad/rad
q(s)/8(s) = 0.025(s + 0.35)(s + 0.71 £ j5.9)/d(s) rad/s/rad

q'(s)/8(s) =5.1(s + 0.049)(s + 1.0 * j6.6)/d(s) rad/s/rad

where d(s) = (s + 0.70 £j1.1)(s + 0.75 £ }6.0)

IME Control Synthesis
als)/8(s) = -0.0062(s + 0.22 £ j5.1)(s + 150)/d(s) rad/rad
q(s)/58(s) = -0.87(s +0.36)(s ~ 0.34 £ 5.1)/d(s) rad/s/rad

q'(s)/8(s) = 2.0(s + 0.042)(s - 3.6)(s + 4.5)/d(s) rad/s/rad

where d(s) = (s + 0.56 £ j1.1)(s + 0.73 £ |5.8)
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(5)/5(s) =-3.5/(s + 0.89 £{0.91)

am(s)/8(s) = -3.3(s + 0.36)/(s + 0.89 +£j0.91)

Note that the short-period mode is well damped. With
this selection, H, is square and also invertible. The
short-period poles will approach those of the model,
the aeroelastic mode poles will move toward the plant
transmission zeros {(or their stable mirror images via

the optimal control formulation), and the o and g time
and frequency responses will be shaped to better
approximate those of a rigid vehicle.

With the state feedback gains K and Kj so
determined, compensators will now be synthesized
using the loop transfer recovery procedure*’.13, which
will then yield the output-feedback loop structure in

Figure 9. Although the & and g responses were those
used in the model-following step, they are not the
measurements to be used for feedback. The feedback
measurements are the same used for the classical
design, q' and q. This selection leads to minimum
phase transmission zeros, for the loop-transfer
recovery, located at -0.081 and -0.46 1/s.

Figure 8 shows the resulting feedback
compensators, prefilter stick gains, and closed-loop
structure after the loop-transfer recovery proceedure is
completed, and some straight-forward pole-zero
cancellations are performed on the compensators.
Note the compensators consist of relatively simple
lead-lag and lag-lead filters of second order. Table 3
contains the effective closed-loop transfer functions

corresponding to the pilot command 3. while Figures 1
thru 3 show the corresponding frequency responses.
Short period damping has improved from L, =036 to
Csp = 0.45 (25% increase) while the first acroelastic
mode damping has improved from Cfl = 0.073 to Cf' =
0.12 (64% increase).

These improvements are :lso apparent in the
closed-loop frequency responses. Besides improved
short-period damping, the aeroelastic mode pule-zero
"saw tooth" located near 6 rad/s in the angle-of-attack
and pitch-rate responses in Figures 1 and 2 is reduced
by roughly 10 db, when compared to the corresponding
open-loop response. This is a result of improved

0.0t Hs+0.38Ke-3 1)
(s+0.081Xs+0.28) |

*
Y >l 005Nse0051%s-38

15+0 331 s+0.48) |
8(s) [
Y S0
—{ 0 —

)

.
0.89 _ S S, S" .
— N Elastic L [

; Aireneft

- 7;——

il i U [

q'(s

l Q.020(s +d W X5+ B}
“’.{ :s.oEnazax,-a;_:_.u;) -
.

0.011(s+0 049% 5511

[ -0 TY-046)
Fig.8, IMF Designed Closed-Loop System

)

Yels) u 7

¢ P(s) > GCis) -
—

l____j NG 14_____

—

Fig. 9, Generic Closed-Loop System

closed-loop pole-zero cancellations (see Table 3) as
desired in the IMF control synthesis (i.e, foilowing a
rigid-body model).

3. Robustness Analysis

Now consider the generic feedback loop
structure in Figure 9, which is a generalization of the
closed-loop systems in Figures 7 and 8, with response
vector y, control inputs u, commands y. , and plant,
compensator, and prefilter transfer function matrices
G(s), K(s), and P(s), respectively. The feedback
compensation in Figure 9 is assumed to be synthesized
with a design model G(s), but the "true” plant transfer
function is taken to be G'(s). Specifically, consider
generic phase loss in each input channel to the plant,
or let

G(s)=Gls)(ets D) (14)
This phase loss can represent, for example, unmodeled
high-frequency dynamics originating from structural
modes, actuators, sensors, etc. Rewriting G'(s) as

GC'(s) = G{siI + E(s)) (15)

it can be shown that

E(s) =(e-5- D1 (16)
where E(s) is the so called plant input multiplicative
error.*
The "true” closed-loop system poles are roots of
the "true” characteristic equation, obtained from
det(l + K(s)G{s)I + E(s)] =0 a7
If the nominal closed-loop system is stable and the
required number of encirclements of the critical point
in Nyquist stability theory is the same for both
nominal and “true” systems, then a sufficient
condition, developed from Eq. (17), guaranteeing
closed-loop stability under E(s)* is

E(jw)] < ol + (K(w)G(w)!] , 0swsSe (18
Eq. (18) is an indication of the system's multivariable
stability robustness margin.

Figure 10 indicates the stability robustness of the
classically designed closed-loop system, with the effect
of multiplicative error due to generic phase loss in
each input channel displayed as well. Note from
Figure 10 the characteristic limiting the stability

robustness is the dip in g{l + (KG)-!] near 6 rad/s. In
fact, the phase loss allowed using this criteria is limited
tot<03s.
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Figure 10. Classical Design Stability Robustness Analysis

Figure 11 indicates the stability robustness
properties of the IMF design, again with the effect of
generic phase loss displayed. Note again a similar
characteristic limiting the robustness of this loop. Here
the allowable phase loss is T < 0.35 s, only slighty better
than the previous result.

The question now turns to the causes for this
limiting characteristic. Literal expressions for the
vehicle transfer function poles and zeros in Table 2 are
available from Ref. 10 for further analysis. Before this,

however, a literal expression for g[l + (KG)1] is
necessary. The approach to be taken here is similar to
that presented in Ref. 11.

With reference to Figure 9, consider a 2 x 2
closed-loop system with

Koy [kn ku] Gl [Sn 812}
w) = , w) =
) ky kg ) gn 82
. a2y
I+ (K(jo)G(jw))1 = a2 (19
2 A
where
k1812 + k2282
app=1+
A
ky 812 + K128
. a =- A
k +k
ay =- 213”’,3 282 20)
kngiy + k12821
ay = 1+ A

mag. (db)

[P YU SVRUUS W [N WU [

.10!. ’ '
y ‘ i
-20:- , ' 4
I g i
-30 ;
10-2 10-1 100 10 102

freq. (rad/s)
gl + (KG)1)

&1~ (KGY1]
B E] (generic phase loss, T = 0.35 s)

Figure 11. IMF Design Stability Robustness Analysis
4 = det [KG] = [k kg2 - Kyzkoy 181182z - 812821

The minimum and maximum singular values of 1 +
(KG)! are given as

ol + (KG)1 = A/2[(T + (KG))( + (KG))*] (21

S+ (KG)") = A/2 (I + (KGN + (KGYH)*]

where A and X denote the minimum and maximum

eigenvalues, respectively. A and X solve

det[M - (I + (KG))I + (KGN =2A2- (4 + DA + 2K = 0(22)
where

A+X=lagl2+ lapgl2+ lay 2+ lani? (23)
M= lapay - aan 12

If & « X, then from Eq. (23), } is approximately given as

N | ayyag - 3193y |2
2T 12+ (aypl2+ lag 12+ lanl?

(24)

or
layya9 - appdy |
NMa 3
ol + (KG)1) (Tapy 12+ lag 12+ lag 12+ lap! )72

(25)

From inspection of Figures 10 and 11, it can be seen

that the condition A « X (or @ « @) is reasonably

satisfied.
Substitution of Eq. (20) into the numerator and
denominator of Eq. (25. yields
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tapan - aay ! =
1
‘ZH L+ kngn + kg + kngiz + kagp + A1 (26)
Pap 12+ Tagp 12+ 1ay 12+ fayil=

1
1P Ukgin kg + 12+ kg, + kyggyy 12 +

Pkargny + koo 12+ kg +kpagy + A1)

These can be further simplified with the following
observation’

D+ kg + kg + ka8 v kg + 4 =

¢cl
det{l + KG] =—
by

A = det [KG] - Ye

ol
where ¢ and ¢, are the system's closed-loop and
open-loop characteristic polynomials, respectively, and
i and w¢ are the compensator and plant transmission
zero polynomials, respectively. With the notation

(27

n, ot
k8

Lipg=12
mol

KiBpq =
where n, and ng are the numerator polynomials of
T Jpq
kij and g, ,respectively, substitution of Egs. (26) and
(27) into Eq. (25) yields the following literal expression
for ofl + (KG)-!].

l‘bcll
AT« (KON = T 7T TR 177 Ing 12+ Tng D)7z (28

= + 1 |
My =0y, g * M Re + WkWe
=7 + .
M2 qkungnz nk:zn.';n
= +
N2 nknngn nkungzl

n22 =y N, + nkung" + “VKVC

1t A

Observe that the "zeros" of g[I + (KG)1] are
nothing more than the closed-loop poles, while the
"poles” of g(I + (KG)'!] depend on the plant's and
compensator’s transter-function zeros as well as their

transmission zeros. This result was first noted in Ref.

11, but the transmission zeros Wygyc were related to
the so called coupling numerators.

Now consider the classically designed closed-
loop system shown in Figure 7. Here

A+ (KG)] =2+ 07051 1w + 0.7526.0)
= 094! (ju + 0.22)(jw + 3.1£j3.8) 1

(29)

It 1s evident that the augmented lirst aeroelastic mode
poles, denoted

$2+ Qw5 + (@D =52+ 135 +37 =5 + 0.75+ 6.0 (30

and their low damping are responsible for the
previously discussed critical stability robustness feature
near 6 rad/s in Figure 10.

From the classical design (see Section 3) and
Figure 4, these poles are primarily a function of the
q'/ 8¢ loop closure. With increasing q'/8¢ root locus
gain ki, , these augmented aeroelastic mode poles
originate from their open-loop locations

s+ (2wl s + (mz)(l =s2+0885+36=5+0.4L£i6.0 (31)

and migrate towards their corresponding aeroelastic

mode zeros in the q'/8¢ transfer function (see Table 2),
denoted as

52+ (20wigs + ( (WD =52+ 155 +89 =5+ 0.73 £ 129 (32)

Yielding the closed-loop locations in Eq. (30) for the
selected value of ky, .

From Ref. 10, the open-loop natural frequency
and damping terms of the aeroelastic mode poles and
zeros in Egs. (31) and (32) are approximately given by

z

1+ GOMFy

(@ =(ay?-Fpp) + ————
fl ) [ﬂl \(l)‘z' F]nl)
2.0

= 35 + (33

Z, Z
LN i BV
M,“qu + [VT, F(1+ VT‘)MW]F‘-

(ay?- Fip)
0.35

(2l =Gy - Fry) +
= 0.62 +

oot » Zg
(0.)12 - F]“l) Msc Mﬂ: 4 (T + VT‘) a

M‘C - ¢1'(X)Flk ) ¢,'(x)
= 2.0 - (-6.5)

( (@5 =
(34)

- 2.2y,
(28w, - F, f\l)Mﬁc + q,"(x)qul 901 + V'ri)v_r‘ M(,F[&c

. (2% = :
811 = q(s)/ Bgls) kp=ng =8/q & 9 Ms_- 0y (0F,, (an? - Fyp )M
812 = q(s)/3cls) kip=ny =0 = 0.82 - (-067)
B2t = qls)/ 8gls) ky =ny_=8c/q
82 =q(s)/8(s) ky = Ny, = 8/q

\VC(S) = 89(5 + 0081)(5 +1.46) WK = k”kzz - k]szl
with g available from Table 2 and k;; available from

Figure 7. Substitution of the above quantities into Eq.
(28) yields
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with the following numerical values:

ya
a +\—,°->=1.o3
T

1

=-0416 ft/s’

=-0.00267 1/s M, =-333 1/s-

=-0.830 1/s

M, =-0.00390 1/s
F, =-1040 1782
Fy, =-631 1/¢
(23w, - Fp ) = 0621 1/5

Zy
23
o
Vi,
M, My, =-0.0655 1/s
M;, = 0809 1/s2

F, =-784 1/s

E

(w?-Fip) =28 1/8
0,{x) = 0.021 It/ft

The above parameters arc functions of the flight
velocity Vp; rigid-body and acroelastic acrodynamic
Y ) ) )

stability derivatives Z,. M,,and F, first in vacuo
‘ )
elastic mode shape, vibration frequency @, and

damping ratio ;. These vehicle parameters appear
explicitlv in the linear equations of motion for the
clastic aircraft!? listed below:.

 Za Z z, . Zs Zs
G = VTIG - (1 +VJ;:)q+WI'n] *V}-‘nl “ VT-,8[+§/—T'_’OC
q=Maa + Mgq + My My + My my + Mg 8¢ + M;, 8¢
n=FusFq- (wy? - Fin) My - 2500 - Fy o )T+ Iy, B¢
*‘Fl& 8¢

(35)
q=q-6,xm

As seen from Eq. (33), the frequency of the open-
loop aeroelastic mode poles is primarily due to the
clastic mode structural frequency and aerodynamic

stiffness (i.e., (% - Fiy)). Also, the inherent low
damping in this mode is primarily due to the elastic
mode structural and aerodynamic damping (i.e., (2§;uy
-Fy; ) ). However, note also that approximately 1/3 of

the total damping is due to aerodynamic coupling
between the rigid and elastic degrees of freedom. It is
now clear which key vehicle and compensator
parameters contribute to the critical stability robustness
properties of this closed-loop system.

Now consider the IMF design closed-loop
system shown in Figure 8. Here

g1y = qls)/ 8gl(s)

812 = q(s)/3cls)

ga1 = q'(s)/8g(s)

€11 = q'(s)/8c(s)
Ve(s) = 89(s + 0.081)(s + 0.46)
yi(s) = 0.00091(s+0.060)(¢-0.35j0.21)(s-1.9)

kyy = 8g{s)/q(s)
kyg = 3gls}/q'(s)
kq; = 8c(s)/qls)
kyy = 8¢c(s)/q'(s)

with g, available from Table 2 and k;, available from
Figure 8. Substitution of the above quantities into Eq.
(28) yields

P(jw « 036 =;1. 0w =-0.73=2:3.8)
o - (KGr} = el a6
- 0.66 1w - 0.83 = 10w ~ %6}
It is cvident that again the augmented first aeroelastic
mode poles

sT e (2Lw)g s + (WD, = s2+15s+34=5+073=)38

and their low damping are responsible for the critical
stapility robustness feature near 6 rad/s in Figure 11
From the IMF design (see Section 4), these poles
ariginate at their open-loop locanon and migrate
toward the transmission zeras {or their stabie mirrar
image) defined through the model-foilowing
formulation, as the control weightung in the loss
function is reduced (o- the loop gains are increased).
Although literal «pproximations for these
transmission zeros are still being developed. the above
expressions for the open-loop aeroelastic poles again
reveal the major source of these critical characteristics.

6. Conclusions

An integrated flight- and aeroelastic-mode
control law was synthesized for a very flexible
supersonic vehicle, using a previously developed
model-following synthesis approach. This technique,
designed to vield a desired closed-loop rather than an
open-loop loop shapes, involves 2 specific LQR
formulation leading to the model-following state-
fcedback gains. Then the usc of asvmptotic loop
transfer recovery is utilized to obtain the
compensation that recovers the LQR robustness
properties, and which leads to an output-feedback
control law. A classically designed control law was also
developed for comparison purposes, and parallels
between the results obtained with the two approaches
are observed.

The resulting closed-loop systems were
evaluated in terms of their performance and
multivariable stability robustness, measured in terms
of the appropriate singular values. This evaluation
utilized approximate literal expressions for those
singular values, expressed in terms of literal
expressions for the poles and zeros-of the vehicle
transfer functions. It was found that both control laws
possessed equivalent performance and stability
robustness, and the characteristics limiting this
robustness were in both cases traced to some specific
step in the synthesis process, as well as the locations of
critical open-loop poles and zeros (or transmission
zeros). Furthermore, closed-form literal expressions for
these characteristics were presented in terms of the
stability derivatives of the vehicle. The insight gained
from this analysis is considered invaluable to the
control system designer, and unavailable from strictly
numerical analysis.
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